Journal of Materials Science

, Volume 40, Issue 17, pp 4571–4577 | Cite as

The ZrO2-TiO2 phase diagram

Article

Abstract

The ZrO2-TiO2 phase diagram was determined experimentally between 800 and 1200°C, 1 atm, extending our knowledge of this system to temperatures previously inaccessible for equilibrium experiments due to sluggish kinetics. The crystallization of the ordered (Zr,Ti)2O4 phase from the oxides was facilitated by the addition of flux (CuO or Li2MoO4/MoO3), and seeds. Two ordered (Zr,Ti)2O4 phases with different compositions were identified, and their phase relationships with TiO2 and ZrO2 solid solutions investigated. Structure data, superstructure reflections and composition were used to locate the ordering phase transition of (Zr,Ti)2O4 in equilibrium with ZrO2 and TiO2. At the onset of ordering between 1130 and 1080°C, (Zr,Ti)2O4 is of composition XTi = 0.495 ± 0.02, and displays a dramatic change in b-dimension. At 1060°C and below, the composition of (Zr,Ti)2O4 is significantly more Ti-rich and dependent on temperature, ranging from XTi = 0.576 at 1060°C to 0.658 at 800°C. This variability in composition of the ordered phase contrasts with previous studies that suggested the composition to be constant at either XTi = 0.667 [ZrTi2O6] or 0.583 [Zr5Ti7O24]. When grown at low temperatures and with lithium molybdate, the crystals of ordered (Zr,Ti)2O4 are acicular to needle shape, and develop distinct square cross-sections and end facets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. J. BROWN and P. DUWEZ, J. Amer. Ceram. Soc. 37 (1954) 129.Google Scholar
  2. 2.
    L. COUGHANOUR, R. ROTH and V. DEPROSSE, J. Res. Natl. Bur. Std. 52 (1954) 37.Google Scholar
  3. 3.
    A. COCCO and G. TORRIANO, Ann. Chim. 55 (1965) 153.Google Scholar
  4. 4.
    T. NOGUCHI and M. MIZUNO, Bull. Chem. Soc. Jpn. 41 (1968) 2895.Google Scholar
  5. 5.
    A. ONO, Mineral. J. 6 (1972) 433.Google Scholar
  6. 6.
    A. SHEVCHENKO, L. LOPATO, I. MAISTER and O. GORBUNOV, Russ. J. Inorg. Chem. 25 (1980) 1379.Google Scholar
  7. 7.
    A. MCHALE and R. ROTH, J. Amer. Ceram. Soc. 69 (1986) 827.CrossRefGoogle Scholar
  8. 8.
    G. WOLFRAM and H. GÖBEL, Mater. Res. Bull. 16 (1981) 1455.CrossRefGoogle Scholar
  9. 9.
    F. AZOUGH, A. WRIGHT and R. FREER, J. Solid State Chem. 108 (1994) 284.CrossRefGoogle Scholar
  10. 10.
    F. AZOUGH, R. FREER, C.-L. WANG and G. LORIMER, J. Mater. Sci. 31 (1996) 2539.CrossRefGoogle Scholar
  11. 11.
    C. WANG, H. LEE, F. AZOUGH and R. FREER, ibid. 32 (1997).Google Scholar
  12. 12.
    S. ZHANG, J. LI, J. CAO, H. ZHAI and B. ZHANG, J. Mater. Sci. Lett. 20 (2001) 1409.CrossRefGoogle Scholar
  13. 13.
    M. BANNISTER and J. BARNES, J. Amer. Ceram. Soc. 69 (1986) C269.CrossRefGoogle Scholar
  14. 14.
    H. BOYSEN, F. FREY and T. VOGT, Acta Crystallogr. B47 (1991) 881.Google Scholar
  15. 15.
    F. FREY, H. BOYSEN and T. VOGT, ibid. B46 (1990).Google Scholar
  16. 16.
    G. WILSON and F. GLASSER, Brit. Ceram. Trans. J. 88 (1989) 69.Google Scholar
  17. 17.
    P. BORDET, A. MCHALE, A. SANTORO and R. ROTH, J. Solid State Chem. 64 (1986) 30.CrossRefGoogle Scholar
  18. 18.
    E. SHAM, M. ARANDA, E. FARFAN-TORRES, J. GOTTIFREDI, M. MARTÍNEZ-LARA and S. BRUQUE, ibid. 139 (1998) 225.CrossRefGoogle Scholar
  19. 19.
    A. BIANCO, G. GUSMANO, R. FREER and P. SMITH, J. Europ. Ceram. Soc. 19 (1999) 959.CrossRefGoogle Scholar
  20. 20.
    U. TROITZSCH, A. G. CHRISTY and D. J. ELLIS, J. Amer. Ceram. Soc. 87 (2004) 2058.Google Scholar
  21. 21.
    U. TROITZSCH and D. J. ELLIS, Europ. J. Mineral. 16 (2004) 577.CrossRefGoogle Scholar
  22. 22.
    U. TROITZSCH, D. J. ELLIS and A. G. CHRISTY Patent Application No. 2003906410 (2003).Google Scholar
  23. 23.
    F. IZUMI and T. IKEDA, Mater. Sci. For. 321–324 (2000) 198.Google Scholar
  24. 24.
    A. GADALLA and J. WHITE, Trans. Brit. Ceram. Soc. 65 (1966) 383.Google Scholar
  25. 25.
    F.-H. LU, F.-X. FANG and Y.-S. CHEN, J. Europ. Ceram. Soc. 21 (2001) 1093.CrossRefGoogle Scholar
  26. 26.
    A. MCHALE and R. ROTH, J. Amer. Ceram. Soc. 66 (1983) C18.Google Scholar
  27. 27.
    Y. KIM and H. JANG, J. Appl. Phys. 89 (2001) 6349.CrossRefGoogle Scholar
  28. 28.
    T. SUGAI and S. HASEGAWA, J. Jpn. Ceram. Assoc. 76 (1968) 429.Google Scholar
  29. 29.
    R. CHRISTOFFERSEN and P. DAVIES, J. Amer. Ceram. Soc. 75 (1992) 563.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.The Australian National UniversityDepartment of Earth and Marine SciencesCanberra ACTAustralia

Personalised recommendations