Advertisement

Journal of Materials Science

, Volume 40, Issue 7, pp 1577–1582 | Cite as

High temperature compressive properties over a wide range of strain rates in an AZ31 magnesium alloy

  • K. IshikawaEmail author
  • H. Watanabe
  • T. Mukai
Article

Abstract

High temperature compressive properties in AZ31 magnesium alloy were examined over a wide strain rate range from 10−3 to 103 s−1. It was suggested that the dominant deformation mechanism in the low strain rate range below 10−1 s−1 was dislocation creep controlled by pipe diffusion at low temperatures, and by lattice diffusion at high temperatures. On the other hand, analysis of the flow behavior and microstructural observations indicated that the deformation at high strain rates of ∼103 s−1 proceeds by conventional plastic flow of dislocation glide and twinning even at elevated temperatures.

Keywords

Magnesium Alloy High Strain Deformation Mechanism Flow Behavior High Strain Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. J. POLMEAR, Mater. Sci. Tech. 10 (1994) 1.Google Scholar
  2. 2.
    Y. TAKEBAYASHI and S. KOIKE, Kobe Steel Eng. Reports 47 (1997) 69.Google Scholar
  3. 3.
    F. H. FROES, D. ELIEZER and E. AGHION, JOM 50 (1998) 30.Google Scholar
  4. 4.
    F. VZERWINSKI, A. ZIELINSKA-LIPIEC, P. J. PINET and J. OVERBEEKE, Acta Mater. 49 (2001) 1225.Google Scholar
  5. 5.
    T. MUKAI, H. WATANABE, T. G. NIEH and K. HIGASHI, Mat. Res. Symp. Proc. 601 (2000) 291.Google Scholar
  6. 6.
    T. MUKAI, H. WATANABE and K. HIGASHI, Mater. Sci. Forum 350/351 (2000) 159.Google Scholar
  7. 7.
    R. E. REED-HILL and W. D. ROBERTSON, Acta Metall. 5 (1957) 728.Google Scholar
  8. 8.
    H. WATANABE, T. MUKAI, M. KOHZU, S. TANABE and K. HIGASHI, Acta Mater. 47 (1999) 3753.Google Scholar
  9. 9.
    H. WATANABE, T. MUKAI, M. MABUCHI and K. HIGASHI, ibid. 49 (2001) 2027.Google Scholar
  10. 10.
    T. SHIMIZU, Alutopia 31(4) (2001) 41.Google Scholar
  11. 11.
    S. HAMA and F. WATANABE, J. Japan Inst. Light Metals 51 (2001) 514.Google Scholar
  12. 12.
    H. WATANABE, T. MUKAI, K. ISHIKAWA, Y. OKANDA, M. KOHZU and K. HIGASHI, ibid. 49 (1999) 401.Google Scholar
  13. 13.
    H. TAKUDA, H. FUJIMOTO and N. HATTA, J. Mater. Process. Tech. 80/81 (1998) 513.Google Scholar
  14. 14.
    J. KANEKO, M. SUGAMATA, M. NUMA, Y. NISHIKAWA and H. TAKADA, J. Japan Inst. Metals 64 (2000) 141.Google Scholar
  15. 15.
    J. KANEKO, T. ASAHINA, M. SUGAMATA, Y. NISHIKAWA and H. TAKADA, ibid. 64 (2000) 1239.Google Scholar
  16. 16.
    H. WATANABE, H. TSUTSUI, T. MUKAI, K. ISHIKAWA, Y. OKANDA, M. KOHZU and K. HIGASHI, Mater. Sci. Forum 350/351 (2000) 171.Google Scholar
  17. 17.
    H. SOMEKAWA, M. KOHZU, S. TANABE and K. HIGASHI, ibid. 350/351 (2000) 177.Google Scholar
  18. 18.
    H. WATANABE, T. TSUTSUI, T. MUKAI, M. KOHZU, S. TANABE and K. HIGASHI, Int. J. Plasticity 17 (2001) 387.Google Scholar
  19. 19.
    W.-J. KIM, S. W. CHUNG, C. S. CHUNG and D. KUM, Acta Mater. 49 (2001) 3337.Google Scholar
  20. 20.
    X. YANG, H. MIURA and T. SAKAI, J. Japan Inst. Light Metals 52 (2002) 318.Google Scholar
  21. 21.
    X. WU and Y. LIU, Scripta Mater. 46 (2002) 269.Google Scholar
  22. 22.
    H. K. LIN and J. C. HUANG, Mater. Trans. 43 (2002) 2424.Google Scholar
  23. 23.
    M. MABUCHI, Y. CHINO and H. IWASAKI, ibid. 44 (2003) 490.Google Scholar
  24. 24.
    H. WATANABE, T. MUKAI, K. SUZUKI and T. SHIMIZU, J. Japan Inst. Light Metals 53 (2003) 50.Google Scholar
  25. 25.
    H. NISHIMURA, O. HASEGAWA, N. KOISO and K. MATSUMOTO, ibid. 53 (2003) 302.Google Scholar
  26. 26.
    J. KOIKE, R. OHYAMA, T. KOBAYASHI, M. SUZUKI and K. MARUYAMA, Mater. Trans. 44 (2003) 445.Google Scholar
  27. 27.
    H. HOSOKAWA, Y. CHINO, K. SHIMOJIMA, Y. YAMADA, C. WEN, M. MABUCHI and H. IWASAKI, ibid. 44 (2003) 484.Google Scholar
  28. 28.
    H. SOMEKAWA, H. WATANABE, T. MUKAI and K. HIGASHI, Scripta Mater. 48 (2003) 1249.Google Scholar
  29. 29.
    H. WATANABE, H. TSUTSUI, T. MUKAI, K. ISHIKAWA, Y. OKANDA, M. KOHZU and K. HIGASHI, Mater. Trans. 42 (2001) 1200.Google Scholar
  30. 30.
    Y. CHINO, M. MABUCHI, K. SHIMOJIMA, Y. YAMADA, C. WEN, K. MIWA, M. NAKAMURA, T. ASAHINA, K. HIGASHI and T. AIZAWA, ibid. 42 (2001) 414.Google Scholar
  31. 31.
    E. DOEGE and K. DRÖDER, J. Mater. Process. Tech. 115 (2001) 14.Google Scholar
  32. 32.
    H. J. FROST and M. F. ASHBY, in “Deformation-Mechanism Maps” (Pergamon Press, Oxford, 1982) p. 153.Google Scholar
  33. 33.
    T. MUKAI, M. YAMANOI and K. HIGASHI, Mater. Trans. 42 (2001) 2652.Google Scholar
  34. 34.
    A. MWEMBELA, E. B. KONOPLEVA and H. J. MCQUEEN, Scripta Mater. 37 (1997) 1789.Google Scholar
  35. 35.
    “ASM Specialty Handbook, Magnesium and Magnesium Alloys,” edited by M. M. Avedesian and H. Baker (AMS Int., Materials Park, OH, 1999) p. 278.Google Scholar
  36. 36.
    O. SIVAKESAVAM, I. S. RAO and Y. V. R. K. PRASAD, Mater. Sci. Tech. 9 (1993) 805.Google Scholar
  37. 37.
    A. G. BEER and M. R. BARNETT, in “Magnesium Technology 2002, Seattle,” edited by H. I. Kaplan (TMS, Warrendale, PA, 2002) p. 193.Google Scholar
  38. 38.
    L. CISAR, Y. YOSHIDA, S. KAMADO, Y. KOJIMA and F. WATANABE, Mater. Trans. 44 (2003) 476.Google Scholar
  39. 39.
    H. J. FROST and M. F. ASHBY, “Deformation-Mechanism Maps” (Pergamon Press, Oxford, 1982) p. 43.Google Scholar
  40. 40.
    C. R. BARRET, A. J. ARDELL and O. D. SHERBY, Trans AIME 230 (1964) 200.Google Scholar
  41. 41.
    S.-E. HSU, G. R. EDWARDS and O. D. SHERBY, Acta Metall. 31 (1983) 763.Google Scholar
  42. 42.
    S. L. ROBINSON and O. D. SHERBY, ibid. 17 (1969) 109.Google Scholar
  43. 43.
    O. A. RUANO, J. WADSWORTH and O. D. SHERBY, J. Mater. Sci. 20 (1985) 3735.Google Scholar
  44. 44.
    S. S. VAGARALI and T. G. LANGDON, Acta Metall. 30 (1982) 1157.Google Scholar
  45. 45.
    S. W. CHUNG, H. WATANABE, W.-J. KIM and K. HIGASHI, Mater. Trans. 45 (2004) 1266.Google Scholar
  46. 46.
    T. MUKAI, M. YAMANOI, H. WATANABE, K. ISHIKAWA and K. HIGASHI, ibid. 42 (2001) 1177.Google Scholar
  47. 47.
    Y. CHINO, M. MABUCHI, R. KISHIHARA, H. HOSOKAWA, Y. YAMADA, C. WEN, K. SHIMOJIMA and H. IWASAKI, ibid. 43 (2002) 2554.Google Scholar
  48. 48.
    Y. YOSHIDA, L. CISAR, S. KAMADO and Y. KOJIMA, ibid. 44 (2003) 468.Google Scholar
  49. 49.
    C. ZENER and J. H. HOLLOMON, J. Appl. Phys. 15 (1944) 22.Google Scholar
  50. 50.
    M. MABUCHI, K. KUBOTA and K. HIGASHI, Mater. Trans. JIM 36 (1995) 1249.Google Scholar
  51. 51.
    R. KAIBYSHEV and O. SITDIKOV, Z. Metallkd. 85 (1994) 10.Google Scholar
  52. 52.
    R. O. KAIBYSHEV and O. S. SITDIKOV, Phys. Met. Metall. 89 (2000) 384.Google Scholar
  53. 53.
    O. STITDIKOV and R. KAIBYSHEV, Mater. Trans. 42 (2001) 1928.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Osaka Municipal Technical Research InstituteOsakaJapan
  2. 2.Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan

Personalised recommendations