Advertisement

Journal of Materials Science

, Volume 40, Issue 6, pp 1387–1391 | Cite as

Metal induced crystallization: Gold versus aluminium

  • L. PereiraEmail author
  • H. águas
  • P. Vilarinho
  • E. Fortunato
  • R. Martins
Photovoltaic Materials and Phenomena Scell-2004

Abstract

In this work metal induced crystallization was studied using aluminium and gold deposited over 150 nm amorphous silicon films grown by LPCVD. Aluminium and gold layers with thickness between 1 and 5 nm were deposited on the silicon films and after that, the samples were annealed at 500C from 5 up to 30 h. When the crystallization is induced through a gold layer, the Si crystalline fraction is higher than when using aluminium. For samples crystallized for 30 h at 500C with 2 nm of metal a crystalline fraction of 57.5% was achieved using gold and only 38.7% when using aluminium.

Keywords

Polymer Aluminium Silicon Gold Crystallization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Y. YOON, S. J. PARK, K. H. KIM and J. JANG, Thin Solid Films 383 (2001) 34.CrossRefGoogle Scholar
  2. 2.
    S.-I. MURAMATSU, Y. MINAGAWA, F. OKA, T. SASAKI and Y. YAZAWA, Sol. Energy Mater. Sol. Cells 74 (2002) 275.Google Scholar
  3. 3.
    R. B. IVERSON and R. REIF, J. Appl. Phys. 62 (1987) 1675.CrossRefGoogle Scholar
  4. 4.
    S. Y. YOON, K. H. KIM, C. O. KIM, J. Y. OH and J. JANG, J. Appl. Phys. 82 (1997) 5865.Google Scholar
  5. 5.
    S.-I. MURAMATSU, Y. MINAGAWA, F. OKA, T. SASAKI and Y. YAZAWA, Sol. Energy Mater. Sol. Cells 74 (2002) 275.CrossRefGoogle Scholar
  6. 6.
    D. A. G. BRUGGEMANN, Ann. Phys.(Leipzig) 24 (1935) 636.Google Scholar
  7. 7.
    P. PETRIK, T. LOHNER, M. FRIED, L. P. BIRÓ, N. Q. KHANH, J. GYULAI, W. LEHNERT, C. SCHNEIDER and H. RYSSEL, J. Appl. Phys. 87 (2000) 1734.CrossRefGoogle Scholar
  8. 8.
    L. HULTMAN, A. ROBERTSSON, H. T. G. HENTZELL, I. ENGSTRON and P. A. PSARAS, J. Appl. Phys. 62 (1987) 3647.CrossRefGoogle Scholar
  9. 9.
    J. STOEMENOS, J. MCINTOSH, N. A. ECONOMOU, Y. K. BHATNAGAR, P. A. COXON, A. J. LOWE, and M. G. CLARK, Appl. Phys. Lett. 58 (1991) 1196.CrossRefGoogle Scholar
  10. 10.
    L. CALCAGNO, S. U. CAMPINASO and S. COFFA, J. Appl. Phys. 66 (1989) 1874.CrossRefGoogle Scholar
  11. 11.
    O. NAST, S. BREHME, S. PRITCHARD, A. G. ABERLE and S. R. WENHAM, Sol. Energy Mater. Sol. Cells 65 (2001) 382.Google Scholar
  12. 12.
    L. PEREIRA, H. AGUAS, R. M. S. MARTINS, P. VILARINHO, E. FORTUNATO and R. MARTINS, Thin Solid Films 451/452 (2004) 334.CrossRefGoogle Scholar
  13. 13.
    R. J. JACCODINE, J. Electrochem. Soc. 110 (1963) 524.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • L. Pereira
    • 1
    Email author
  • H. águas
    • 1
  • P. Vilarinho
    • 2
  • E. Fortunato
    • 3
  • R. Martins
    • 3
  1. 1.Departamento de Ciência dos Materiais, Faculdade de Ciências e TecnologiaUniversidade Nova de Lisboa and CEMOPCaparicaPortugal
  2. 2.Departamento de Engenharia Cerâmica e do Vidro, CICECOUniversidade de AveiroAveiroPortugal
  3. 3.Departamento de Ciência dos Materiais, Faculdade de Ciências e TecnologiaUniversidade Nova de Lisboa and CEMOPCaparicaPortugal

Personalised recommendations