Generalized Algorithm for Restricted Weak Composition Generation

Generation Algorithm for Second-Order Restricted Weak Compositions
  • Daniel R. PageEmail author


This paper presents a new algorithm that arrives at a generalized solution for the generation of restricted weak compositions of n-parts. In particular, this generalized algorithm covers many commonly sought compositions such as bounded compositions, restricted compositions, weak compositions, and restricted part compositions. Introduced is an algorithm for generating generalized types of restricted weak compositions called first-order, and second-order restricted weak compositions.


Restricted compositions Restricted weak compositions Generalized algorithms Generalized compositions Generation algorithms Enumeration algorithms Integer compositions Weak integer compositions Enumeration Combinatorics Computational number theory 

Mathematics Subject Classifications (2010)

68R05 68R01 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bacchelli, S., Barcucci, E., Grazzini, E., Pergola, E.: Exhaustive generation of combinatorial objects by eco. Acta Inform. 40, 585–602 (2004)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bernini, A., Grazzini, E., Pergola, E., Pinzani, R.: A general exhaustive generation algorithm for gray structures. Acta Inform. 44, 361–376 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gray, F.: Pulse code communication. US Patent 2632058 (1953)Google Scholar
  4. 4.
    Heubach, S., Mansour, T.: Combinatorics of Compositions and Words. CRC Press (2010)Google Scholar
  5. 5.
    Klingsberg, P.: A gray code for compositions. J. Algorithms 3(1), 41–44 (1981)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Knuth, D.: The Art of Computer Programming, vol. 4. Addison Wesley (2005)Google Scholar
  7. 7.
    Mansour, T., Nassar, G.: Gray codes, loopless algorithm and partitions. J. Math. Model. Algor. 7, 291–310 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Mansour, T., Nassar, G.: Loop-free gray code algorithms for the set of compositions. J. Math. Model. Algor. 9, 343–345 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Opdyke, J.: A unified approach to algorithms generating unrestricted and restricted integer compositions and integer partitions. Journal of Mathematical Modelling and Algorithms 9(1), 53–97 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Reingold, E.M., Nievergelt, J., Deo, N.: Combinatorial algorithms: theory and practice. Prentice-Hall Inc. (1977)Google Scholar
  11. 11.
    Vajnovszki, V., Vernay, R.: Restricted compositions and permutations: from old to new gray codes. Inf. Process. Lett. 111(13), 650–655 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Walsh, T.: Loop-free sequencing of bounded integer compositions. J. Comb. Math. Comb. Comput. 33, 323–345 (2000)zbMATHGoogle Scholar
  13. 13.
    Walsh, T.: Generating gray codes in o(1) worse-case time per word. Discret. Math. Theor. Comput. Sci. 2731, 73–88 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.WinnipegCanada

Personalised recommendations