Journal of Mathematical Modelling and Algorithms

, Volume 11, Issue 4, pp 345–359 | Cite as

Dijkstra’s Algorithm for Solving the Shortest Path Problem on Networks Under Intuitionistic Fuzzy Environment

  • Sathi MukherjeeEmail author


In this paper, a well known problem called the Shortest Path Problem (SPP) has been considered in an uncertain environment. The cost parameters for traveling each arc have been considered as Intuitionistic Fuzzy Numbers (IFNs) which are the more generalized form of fuzzy numbers involving a degree of acceptance and a degree of rejection. A heuristic methodology for solving the SPP has been developed, which aim to exploit tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness and low cost solution corresponding to the minimum-cost path or the shortest path. The Modified Intuitionistic Fuzzy Dijkstra’s Algorithm (MIFDA) has been proposed in this paper for solving Intuitionistic Fuzzy Shortest Path Problem (IFSPP) using the Intuitionistic Fuzzy Hybrid Geometric (IFHG) operator. A numerical example illustrates the effectiveness of the proposed method.


Shortest path problem Intuitionistic fuzzy sets (IFSs) Intutionistic fuzzy value (IFV) Intuitionistic fuzzy numbers (IFNs) Intutionistic fuzzy hybrid geometric (IFHG) operator Decision making problem Dijkstra’s algorithm 

Mathematics Subject Classifications (2010)

05C85 05C22 05C30 90B10 68T20 68T30 68T37 03E72 47S40 90B50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atanassov, K.T.: Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia (deposed in Central Science-Technical Library of Bulgarian Academy of Science, 1697/84) (1983) (in Bulgarian)Google Scholar
  2. 2.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Set Syst. 20, 87–96 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Atanassov, K.T.: More on intuitionistic fuzzy sets. Fuzzy Set Syst. 33(1), 37–46 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Atanassov, K.T.: Idea for intuitionistic fuzzy sets equation, in equation and optimization. Notes on IFS 1(1), 17–24 (1995)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Atanassov, K.T.: Intuitionistic Fuzzy Sets. Physica, Heidelberg (1999)zbMATHGoogle Scholar
  6. 6.
    Atanassov, K.T.: Two theorems for Intuitionistic fuzzy sets. Fuzzy Set Syst. 110, 267–269 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Atanassov, K.T., Gargov, G.: Interval-valued intuitionistic fuzzy sets. Fuzzy Set Syst. 31(3), 343–349 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Atanassov, K.T., Pasi, G., Yager, R.R.: Intuitionistic fuzzy interpretations of multi-criteria multi-person and multi-measurement tool decision making. Int. J. Syst. Sci. 36, 859–868 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Boroujerdi, A., Uhlmann, J.: An efficient algorithm for computing least cost paths with turn constraints. Inf. Process. Lett. 67(6), 317–321 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Burillo, P., Bustince, H., Mohedano, V.: Some definition of Intuitionistic Fuzzy numbers, first properties. In: Lakoy, D. (ed.) Proc. of the 1st Workshop on Fuzzy Based Expert Systems, pp. 53–55. Sofia, Bulgaria (1994)Google Scholar
  11. 11.
    Bustince, H., Burillo, P.: Vague sets are intuitionistic fuzzy sets. Fuzzy Set Syst. 79, 403–405 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Chen, S.M., Tan, J.M.: Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Set Syst. 67, 163–172 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Chuang, T.-N., Kung, J.-Y.: The fuzzy shortest path length and the corresponding shortest path in a network. Comput. Oper. Res. 32(6), 1409–1428 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chuang, T.-N., Kung, J.-Y.: A new algorithm for the discrete fuzzy shortest path problem in a network. Appl. Math. Comput. 174(1), 660–668 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959). doi: 10.1007/BF01386390 MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Dijkstra, E.W., Misa, T.J. (eds.): An Interview with Edsger W. Dijkstra. Commun. ACM 53(8), 41–47 (2010). doi: 10.1145/1787234.1787249 CrossRefGoogle Scholar
  17. 17.
    Domenico, C., Simone, F.: Two-levels-greedy: a generalization of Dijkstra’s shortest path algorithm. Electron. Notes Discret. Math. 17, 81–86 (2004)CrossRefGoogle Scholar
  18. 18.
    Galand, L., Perny, P., Spanjaard, O.: Choquet-based optimisation in multiobjective shortest path and spanning tree problems. Eur. J. Oper. Res. 204(2), 303–315 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Gau, W.L., Buehrer, D.J.: Vague sets. IEEE Trans. Syst. Man Cybern. 23(2), 610–614 (1993)zbMATHCrossRefGoogle Scholar
  20. 20.
    Guiwu, W.: Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making. Appl. Soft Comput. 10(2), 423–431 (2010)CrossRefGoogle Scholar
  21. 21.
    Gui-Wu, W.: Some generalized aggregating operators with linguistic information and their application to multiple attribute group decision making. Comput. Ind. Eng. 61(1), 32–38 (2011)CrossRefGoogle Scholar
  22. 22.
    Hassanzadeh, R., Mahdavi, I., Mahdavi-Amiri, N., Tajdin, A.: A genetic algorithm for solving fuzzy shortest path problems with mixed fuzzy arc lengths. Math. Comput. Model. (2011, in press). doi: 10.1016/j.mcm.2011.03.040
  23. 23.
    Hernandes, F., Lamata, M.T., Verdegay, J.L., Yamakami, A.: The shortest path problem on networks with fuzzy parameters. Fuzzy Set Syst. 158(14), 1561–1570 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Hong, D.H., Choi, C.H.: Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Set Syst. 114, 103–113 (2000)zbMATHCrossRefGoogle Scholar
  25. 25.
    Ji, X., Iwamura, K., Shao, Z.: New models for shortest path problem with fuzzy arc lengths. Appl. Math. Model. 31(2), 259–269 (2007)zbMATHCrossRefGoogle Scholar
  26. 26.
    Keshavarz, E., Khorram, E.: A fuzzy shortest path with the highest reliability. J. Comput. Appl. Math. 230(1), 204–212 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Klein, C.M.: Fuzzy shortest paths. Fuzzy Set Syst. 39(1), 27–41 (1991)zbMATHCrossRefGoogle Scholar
  28. 28.
    Knuth, D.E.: A generalization of Dijkstra’s algorithm. Inf. Process. Lett. 6(1), 1–5 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Kung, J.-Y., Chuang, T.-N.: The shortest path problem with discrete fuzzy arc lengths. Comput. Math. Appl. 49(2–3), 263–270 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Li, D.F.: Multiattribute decision making models and methods using intuitionistic fuzzy sets. J. Comput. Syst. Sci. 70, 73–85 (2005)zbMATHCrossRefGoogle Scholar
  31. 31.
    Lin, K.-C., Chern, M.-S.: The fuzzy shortest path problem and its most vital arcs. Fuzzy Set Syst. 58(3), 343–353 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Lu, X., Camitz, M.: Finding the shortest paths by node combination. Appl. Math. Comput. 217(13), 6401–6408 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Mahdavi, I., Nourifar, R., Heidarzade, A., Mahdavi Amiri, N.: A dynamic programming approach for finding shortest chains in a fuzzy network. Appl. Soft Comput. 9(2), 503–511 (2009)CrossRefGoogle Scholar
  34. 34.
    Misra, J.: A walk over the shortest path: Dijkstra’s algorithm viewed as fixed-point computation. Inf. Process. Lett. 77(2–4), 197–200 (2011)Google Scholar
  35. 35.
    Mitchell, H.B.: Ranking-intuitionistic fuzzy numbers. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 12(3), 377–386 (2004)zbMATHCrossRefGoogle Scholar
  36. 36.
    Moazeni, S.: Fuzzy shortest path problem with finite fuzzy quantities. Appl. Math. Comput. 183(1), 160–169 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Noshita, K.: A theorem on the expected complexity of Dijkstra’s shortest path algorithm. J. Algorithm 6(3), 400–408 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Noshita, K., Masuda, E., Machida, H.: On the expected behaviors of the Dijkstra’s shortest path algorithm for complete graphs. Inf. Process. Lett. 7(5), 237–243 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Okada, S., Gen, M.: Fuzzy shortest path problem. Comput. Ind. Eng. 27(1–4), 465–468 (1994)CrossRefGoogle Scholar
  40. 40.
    Okada, S., Soper, T.: A shortest path problem on a network with fuzzy arc lengths. Fuzzy Set Syst. 109(1), 129–140 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Okada, S.: Fuzzy shortest path problems incorporating interactivity among paths. Fuzzy Set Syst. 142(3), 335–357 (2004)zbMATHCrossRefGoogle Scholar
  42. 42.
    Orlin, J.B., Madduri K., Subramani, K., Williamson, M.: A faster algorithm for the single source shortest path problem with few distinct positive lengths. J. Discret. Algorithms 8(2), 189–198 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Smith, O.J., Boland, N., Waterer, H.: Solving shortest path problems with a weight constraint and replenishment arcs. Comput. Oper. Res. 39(5), 964–984 (2012)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Su, Z.-x., Chen, M.-y., Xia, G.-p., Wang, L.: An interactive method for dynamic intuitionistic fuzzy multi-attribute group decision making. Expert Syst. Appl. 38(12), 15286–15295 (2011)CrossRefGoogle Scholar
  45. 45.
    Su, Z.-x., Chen, M.-y., Xia, G.-p., Wang, L.: Induced generalized intuitionistic fuzzy OWA operator for multi-attribute group decision making. Expert Syst. Appl. 39(2), 1902–1910 (2012)CrossRefGoogle Scholar
  46. 46.
    Szmidt, E., Kacprzyk, J.: Remarks on some applications of intuitionistic fuzzy sets in decision making. NIFS 2(3), 22–31 (1996)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Szmidt, E., Kacrzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Set Syst. 114(3), 505–518 (2000)zbMATHCrossRefGoogle Scholar
  48. 48.
    Szmidt, E., Kacprzyk, J.: Using intuitionistic fuzzy sets in group decision making. Control Cybern. 31, 1037–1053 (2002)zbMATHGoogle Scholar
  49. 49.
    Szmidt, E., Kacprzyk, J.: A consensus-reaching process under intuitionistic fuzzy preference relations. Int. J. Intell. Syst. 18(7), 837–852 (2003)zbMATHCrossRefGoogle Scholar
  50. 50.
    Tajdin, A., Mahdavi, I., Mahdavi-Amiri, N., Sadeghpour-Gildeh, B.: Computing a fuzzy shortest path in a network with mixed fuzzy arc lengths using α-cuts. Comput. Math. Appl. 60(4), 989–1002 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Träff, J.L.: An experimental comparison of two distributed single-source shortest path algorithms. Parallel Comput. 21(9), 1505–1532 (1995)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Xu, M.H., Liu, Y.Q., Huang, Q.L, Zhang, Y.X., Luan, G.F.: An improved Dijkstra’s shortest path algorithm for sparse network. Appl. Math. Comput. 185(1), 247–254 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Xu, Z.S.: An overview of methods for determining OWA weights. Int. J. Intell. Syst. 20, 843–865 (2005)zbMATHCrossRefGoogle Scholar
  54. 54.
    Xu, Z.S, Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 35, 417–433 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Xu, Z.S.: Intuitionistic preference relations and their application in group decision making. Inf. Sci. 177, 2363–2379 (2007)zbMATHCrossRefGoogle Scholar
  56. 56.
    Xu, Z.S.: Models for multiple attribute decision making with intuitionistic fuzzy information. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 15, 285–297 (2007)zbMATHCrossRefGoogle Scholar
  57. 57.
    Xu, Z.S.; Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15, 1179–1187 (2007)CrossRefGoogle Scholar
  58. 58.
    Zadeh, L.A: Fuzzy sets. Inf. Control 8, 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Zhou, L.-G., Chen, H.-Y., Merigó, J.M., Gil-Lafuente, A.M.: Uncertain generalized aggregation operators. Expert Syst. Appl. 39(1), 1105–1117 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Bengal College of Engineering and TechnologyDurgapurIndia

Personalised recommendations