Journal of Mathematical Modelling and Algorithms

, Volume 11, Issue 3, pp 249–268 | Cite as

The Maximum Degree & Diameter-Bounded Subgraph and its Applications

  • Anthony Dekker
  • Hebert Pérez-RosésEmail author
  • Guillermo Pineda-Villavicencio
  • Paul Watters


We introduce the problem of finding the largest subgraph of a given weighted undirected graph (host graph), subject to constraints on the maximum degree and the diameter. We discuss some applications in security, network design and parallel processing, and in connection with the latter we derive some bounds for the order of the largest subgraph in host graphs of practical interest: the mesh and the hypercube. We also present a heuristic strategy to solve the problem, and we prove an approximation ratio for the algorithm. Finally, we provide some experimental results with a variety of host networks, which show that the algorithm performs better in practice than the prediction provided by our theoretical approximation ratio.


Network design Degree/diameter problem Botnets Mesh 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amini, O., Peleg, D., Perennes, S., Sau, I., Saurabh, S.: Degree-constrained subgraph problems: hardness and approximation results. In: Procs. ALGO-WAOA, 2008. LNCS, vol. 5426, pp. 29–42 (2008)Google Scholar
  2. 2.
    Asahiro, Y., Miyano, E., Samizo, K.: Approximating maximum diameter-bounded subgraphs. In: Procs. LATIN, 2010. LNCS, vol. 6034, pp. 615–626 (2010)Google Scholar
  3. 3.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barabási, A.-L.: Linked: The New Science of Networks. Perseus Publishing (2002)Google Scholar
  5. 5.
    Cohen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering Codes. Elsevier, Amsterdam (1997)zbMATHGoogle Scholar
  6. 6.
    Dekker, A., Colbert, B.: Network robustness and graph topology. In: Procs. 27th Australasian Comp. Science Conf., CRPIT, vol. 26, pp. 359–368 (2004)Google Scholar
  7. 7.
    Dekker, A.: Simulating network robustness for critical infrastructure networks. In: Procs. 28th Australasian Comp. Science Conf., CRPIT, vol. 38, pp. 59–67 (2005)Google Scholar
  8. 8.
    Dekker, A., Colbert, B.: The symmetry ratio of a network. In: Procs. 11th Computing: The Australasian Theory Symposium, CRPIT, vol. 41, pp. 13–20 (2005)Google Scholar
  9. 9.
    Duch, J., Arenas, A.: Community identification using extremal optimization. Phys. Rev. E. 72, 027104 (2005)CrossRefGoogle Scholar
  10. 10.
    Elspas, B.: Topological constraints on interconnection-limited logic. In: Proceedings of the Fifth IEEE Annual Symposium on Switching Circuit Theory and Logical Design, pp. 133–137 (1964)Google Scholar
  11. 11.
    Exoo, G.: A family of graphs and the degree-diameter problem. J. Graph Theory 37, 118–124 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of NP-completeness. Freeman and Co. (1979)Google Scholar
  13. 13.
    Johnson, D.: The NP-completeness column: an ongoing guide. J. Algorithms 6, 145–159 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds). Complexity of Computer Computations, pp. 85–103 (1972)Google Scholar
  15. 15.
    Könemann, J., Levin, A., Sinha, A.: Approximating the degree-bounded minimum diameter spanning tree problem. Algorithmica 41, 117–129 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kumar, N.: Bounding the volume of Hamming balls. Accessed Feb 2011
  17. 17.
    Loz, E., Pérez-Rosés, H., Pineda-Villavicencio, G.: Combinatorics wiki – the degree diameter problem for general graphs. Accessed 14 Jan 2012
  18. 18.
    Loz, E., Pérez-Rosés, H., Pineda-Villavicencio, G.: Combinatorics wiki - MaxDDBS in the mesh. Accessed on 14 Jan 2012
  19. 19.
    Miller, M., Siran, J.: Moore graphs and beyond: a survey of the degree-diameter problem. Electron. J. Combin., Dynamic Survey 14, 1–61 (2005)Google Scholar
  20. 20.
    Ravi, R., Marathe, M., Ravi, S., Rosenkrantz, D., Hunt III, H.B.: Approximation algorithms for degree-constrained minimum-cost network-design problems. Algorithmica 1, 58–78 (2001)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Skriganov, M., Sobolev, A.: Variation of the number of lattice points in large balls. Acta Arith. 120, 245–267 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Sohaee, N., Forst, C.: Bounded diameter clustering scheme for protein interaction networks. In: Procs. World Congress on Engineering and Computer Science, vol. I (2009)Google Scholar
  23. 23.
    Watts, D.: Six Degrees: The Science of a Connected Age. William Heinemann (2003)Google Scholar
  24. 24.
    Widmer, M.: Lipschitz Class, Narrow Class, and Counting Lattice Points. Report 2010–13, Graz University of Technology (2010)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Anthony Dekker
    • 1
  • Hebert Pérez-Rosés
    • 2
    Email author
  • Guillermo Pineda-Villavicencio
    • 1
  • Paul Watters
    • 1
  1. 1.Center for Informatics and Applied OptimizationUniversity of BallaratBallaratAustralia
  2. 2.Department of Computer ScienceThe University of NewcastleNewcastleAustralia

Personalised recommendations