Consecutive Ones Matrices for Multi-dimensional Orthogonal Packing Problems

Article
  • 79 Downloads

Abstract

The multi-dimensional orthogonal packing problem (OPP) is a well studied decisional problem. Given a set of items with rectangular shapes, the problem is to decide whether there is a non-overlapping packing of these items in a rectangular bin. The rotation of items is not allowed. A powerful caracterization of packing configurations by means of interval graphs was recently introduced. In this paper, we propose a new algorithm using consecutive ones matrices as data structure. This new algorithm is then used to solve the two-dimensional orthogonal knapsack problem. Computational results are reported, which show its effectiveness.

Keywords

Orthogonal packing problem Interval graph Consecutive ones matrices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldacci, R., Boschetti, M.A.: A cutting plane approach for the two-dimensional orthogonal non-guillotine cutting stock problem. Eur. J. Oper. Res. 183(3), 1136–1149 (2007)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Beasley, J.E.: Algorithms for unconstrained two-dimensional guillotine cutting. J. Oper. Res. Soc. 36(4), 297–306 (1985)MathSciNetMATHGoogle Scholar
  3. 3.
    Beasley, J.E.: An exact two-dimensional non-guillotine cutting tree search procedure. Oper. Res. 33(1), 49–64 (1985)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Beasley, J.E., Mingozzi, A.: A New Formulation for the two-dimensional Orthogonal Cutting Problem. Tech. rep., University of Bologna, Italy (1996)Google Scholar
  5. 5.
    Beldiceanu, N., Carlsson, M.: New filtering for the cumulative constraint in the context of non-overlapping rectangles. In: Lecture Notes in Computer Science, CPAIOR08, vol. 5015, pp. 21–25 (2008)Google Scholar
  6. 6.
    Beldiceanu, N., Carlsson, M., Thiel, S.: Sweep synchronization as a global propagation mechanism. COM 33(10), 2835–2851 (2006)MATHGoogle Scholar
  7. 7.
    Below, G., Scheithauer, G.: Lower-dimensional bounds and a new model for higher-dimensional orthogonal packing (2008)Google Scholar
  8. 8.
    Caprara, A., Monaci, M.: On the two-dimensional knapsack problem. Oper. Res. Lett. 32(1), 5–14 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Carlier, J., Néron, E.: A new lp-based lower bound for the cumulative scheduling problem. Eur. J. Oper. Res. 127, 363–382 (2000)MATHCrossRefGoogle Scholar
  10. 10.
    Chen, C.S., Lee, S.M., Shen, Q.S.: An analytical model for the container loading problem. Eur. J. Oper. Res. 86(1), 68–76 (1995)CrossRefGoogle Scholar
  11. 11.
    Christofides, N., Hadjiconstantinou, E.: An exact algorithm for orthogonal 2-d cutting problems using guillotine cuts. Eur. J. Oper. Res. 83(1), 21–38 (1995)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Christofides, N., Whitlock, C.: An algorithm for two-dimensional cutting problems. Oper. Res. 25(1), 30–44 (1977)MATHCrossRefGoogle Scholar
  13. 13.
    Clautiaux, F., Carlier, J., Moukrim, A.: A new exact method for the orthogonal packing problem. Eur. J. Oper. Res. 183(3), 1196–1211 (2007)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Clautiaux, F., Alves, C., de Carvalho, J.V. A survey of dual-feasible functions and superadditive functions. Ann. Oper. Res. 179(1), 317–342 (2008)CrossRefGoogle Scholar
  15. 15.
    Clautiaux, F., Jouglet, A., Carlier, J., Moukrim, A.: A new constraint programming approach for the orthogonal packing problem. Comput. Oper. Res. 35(3), 944–959 (2008)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Dyckhoff, H.: A typology of cutting and packing problems. Eur. J. Oper. Res. 44(2), 145–159 (1990)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Fekete, S.P., Schepers, J.: New classes of lower bounds for the bin packing problem. Math. Program. 91, 11–31 (2001)MathSciNetMATHGoogle Scholar
  18. 18.
    Fekete, S.P., Schepers, J.: A combinatorial characterization of higher-dimensional orthogonal packing. Math. Oper. Res. 29(2), 353–368 (2004)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Fekete, S.P., Schepers, J., van der Veen, J.: An exact algorithm for higher-dimensional orthogonal packing. Oper. Res. 55(3), 569–587 (2007)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Ferreira, E., Oliveira, J.: Fekete and Schepers’ Graph-based Algorithm for the Two-Dimensional Orthogonal Packing Problem Revisited. Gabler (2008)Google Scholar
  21. 21.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of np-completeness (1979)Google Scholar
  22. 22.
    Mercier, L., v Hentenryck, P.: Edge finding for cumulative scheduling. IJOC 20(1), 143–153 (2008)CrossRefGoogle Scholar
  23. 23.
    Onodera, H., Taniguchi, Y., Tamaru, K.: Branch-and-bound placement for building block layout. In: 28th ACM/IEEE Design Automation Conference, pp. 433–439 (1991)Google Scholar
  24. 24.
    Padberg, M.: Packing small boxes into a big box. Math. Methods Oper. Res. 52(1), 1–21 (2000)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Pisinger, D., Sigurd, M.: Using decomposition techniques and constraint programming for solving the two-dimensional bin packing problem. INFORMS J. Comput. 19(1), 36–51 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Simonis, H., O’Sullivan, B.: Search Strategies for Rectangle Packing (2008)Google Scholar
  27. 27.
    Wäscher, G., HauBner, H., Schuman, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183(3), 1109–1130 (2007)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.IMB/INRIA Bordeaux - Sud-OuestUniversity of BordeauxTalence CedexFrance
  2. 2.LabriUniversity of BordeauxTalence CedexFrance

Personalised recommendations