Journal of Mathematical Modelling and Algorithms

, Volume 9, Issue 3, pp 275–289 | Cite as

Combining Gene Expression Profiles and Drug Activity Patterns Analysis: A Relational Clustering Approach

  • Elisabetta Fersini
  • E. Messina
  • F. Archetti
  • C. Manfredotti


The combined analysis of tissue micro array and drug response datasets has the potential of revealing valuable knowledge about various relations among gene expressions and drug activity patterns in tumor cells. However, the amount and the complexity of biological data needs appropriate data mining models in order to extract interesting patterns and useful information. The ultimate goal of this paper is to define a model which, given the gene expression profile related to a specific tumor tissue, could help in selecting a set of most responsive drugs. This is accomplished through an integrated framework based on a constraint-based clustering algorithm, called Relational K-Means, which groups cell lines using drug response information and taking into account cell-to-cell relationships derived from their gene expression profiles.


Relational clustering Pharmacogenomics NCI60 dataset analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amato, R., Menniti, M., Agosti, V., Boito, R., Costa, N., Bond, H.M., Barbieri, V., Tagliaferri, P., Venuta, S., Perrotti, N.: IL-2 signals through Sgk1 and inhibits proliferation and apoptosis in kidney cancer cells. J. Mol. Med. 85(7), 707–721 (2007)CrossRefGoogle Scholar
  2. 2.
    Basu, S., Bilenko, M., Mooney, R.J.: A probabilistic framework for semi-supervised clustering. In: Kim, W., Kohavi, R., Gehrke, J., DuMouchel, W. (eds.) Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 22–25 August 2004, Seattle, pp. 59–68. ACM, New York (2004)CrossRefGoogle Scholar
  3. 3.
    Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in semi-supervised clustering. In: Greiner, R., Schuurmans, D. (eds.) Proceedings of the Twenty-First International Conference on Machine Learning 2004, Alberta, pp. 81–88. ACM, New York (2004)Google Scholar
  4. 4.
    Buchholz, M., Biebl, A., Neee, A., Wagner, M., Iwamura, T., Leder, G., Adler, G., Gress, T.: SERPINE2 (protease nexin I) promotes extracellular matrix production and local invasion of pancreatic tumors in vivo. Cancer Res. 63, 4945–4951 (2003)Google Scholar
  5. 5.
    Chang, J.H., Hwang, K.B., Zhang, B.T.: Analysis of gene expression profiles and drug activity patterns by clustering and Bayesian network learning. In: Lin, S.M., Johnson, K.F. (eds.) Methods of Microarray Data Analysis II, chapter 11, pp. 169–184. Kluwer Academic, Dordrecht (2002)CrossRefGoogle Scholar
  6. 6.
    Clark, C.J., Sage, E.H.: A prototypic matricellular protein in the tumor microenvironment where there’s SPARC, there’s fire. J. Cell. Biochem. 104(3), 721–732 (2008)CrossRefGoogle Scholar
  7. 7.
    Cohen, J., Cohen, P., West, S.G., Aiken, L.S.: Applied Multiple Regression/Correlation Analysis for the Behavioural Science. Lawrence Erlbaum Associates, Hillsdale (2003)Google Scholar
  8. 8.
    Corsini, P., Lazzerini, B., Marcelloni, F.: A new fuzzy relational clustering algorithm based on the fuzzy C-means algorithm. J. Soft Comput. 9, 439–447 (2005)CrossRefGoogle Scholar
  9. 9.
    Dasgupta, N., Lin, S.M., Carin, L.: Modeling pharmacogenomics of the NCI-60 anticancer data set: utilizing kernel PLS to correlate the microarray data to therapeutic responses. In: Lin, S.M., Johnson, K.F. (eds.) Methods of Microarray Data Analysis II, chapter 10, pp. 151–167. Kluwer Academic, Dordrecht (2002)CrossRefGoogle Scholar
  10. 10.
    Del Rio, M., Molina, F., Bascoul-Mollevi, C., Copois, V., Bibeau, F., Chalbos, P., Bareil, C., Kramar, A., Salvetat, N., Fraslon, C., Conseiller, E., Granci, V., Leblanc, B., Pau, B., Martineau, P., Ychou, M.: Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, fluorouracil, and irinotecan. J. Clin. Oncol. 25(7), 773–780 (2007)CrossRefGoogle Scholar
  11. 11.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39(1), 1–38 (1977)MATHMathSciNetGoogle Scholar
  12. 12.
    Edwards, K.M., Mnger, K.: Depletion of physiological levels of the human TID1 protein renders cancer cell lines resistant to apoptosis mediated by multiple exogenous stimuli. Oncogene 23(52), 8419–8431 (2004)CrossRefGoogle Scholar
  13. 13.
    Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. In: Schekman, R. (ed.) Proceedings of the National Academy of Sciences of the United States of America, vol. 1998, pp. 14863–14868 (1998)Google Scholar
  14. 14.
    Eren, B., Sar, M., Oz, B., Dincbas, F.H.: MMP-2, TIMP-2 and CD44v6 expression in non-small-cell lung carcinomas. Ann. Acad. Med. Singap. 37(1), 32–39 (2008)Google Scholar
  15. 15.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. In: Shamir, R., Miyano, S., Istrail, S., Pevzner, P., Waterman, M. (eds.) Proceedings of the Fourth Annual International Conference on Computational Molecular Biology, 8–11 April 2000, Tokyo, pp. 127–135 (2000)Google Scholar
  16. 16.
    Gonzalez, T.F.: Clustering to minimize the maximum inter-cluster distance. J. Theor. Comput. Sci. 38, 293–306 (1985)MATHCrossRefGoogle Scholar
  17. 17.
    Graepel, T., Burger, M., Obermayer, K.: Self-organizing maps: generalizations and new optimization techniques. J. Neurocomput. 21, 173–190 (1998)MATHCrossRefGoogle Scholar
  18. 18.
    Hall, M.A.: Correlation-based feature reduction for discrete and numeric class machine learning. In: Proceedings of the 17th International Conference on Machine Learning (2000)Google Scholar
  19. 19.
    Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. MIT, Cambridge (2001)Google Scholar
  20. 20.
    Hansen, G.A., Vorum, H., Jacobsen, C., Honore, B.: Calumenin but not reticulocalbin forms a Ca2 +-dependent complex with thrombospondin-1. A potential role in haemostasis and thrombosis. Mol. Cell. Biochem. 320, 25–33 (2009)CrossRefGoogle Scholar
  21. 21.
    Hartemink, A.J., Gifford, D.K., Jaakkola, T.S., Young, R.A.: Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In: Altman, R.B., Dunker, A.K., Hunker, L., Lauderdale, K., Klein, T.E.D. (eds.) Proceedings of Pacific Symposium on Biocomputing, 3–7 January 2001, Hawaii, pp. 422–433 (2001)Google Scholar
  22. 22.
    Hwang, K.B., Cho, D.Y., Park, S.W., Kim, S.D., Zhang, B.T.: Applying machine learning techniques to analysis of gene expression data: cancer diagnosis. In: Lin, S.M., Johnson, K.F. (eds). Methods of Microarray Data Analysis, pp. 167–182. Kluwer Academic, Dordrecht (2001)Google Scholar
  23. 23.
    Jalilian, A., Javadi, E., Akrami, M., Fakhrzadeh, H., Heshmat, R., Rahmani, M., Bandarian, F.: Association of cys 311 ser polymorphism of paraoxonase-2 gene with the risk of coronary artery disease. Arch Iran Med. 11(5), 544–549 (2008)Google Scholar
  24. 24.
    Jiang, L.I., Collins, J., Davis, R., Fraser, I.D., Sternweis, P.C.: Regulation of cAMP responses by the G12/13 pathway converges on adenylyl cyclase VII. J. Biol. Chem. 283(34), 23429–23439 (2008)CrossRefGoogle Scholar
  25. 25.
    Khan, J., Wei, J.S., Ringnr, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., Meltzer, P.S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. J. Nat. Med. 7, 673–679 (2001)CrossRefGoogle Scholar
  26. 26.
    Kim, S., Jin, J., Kunapuli, S.P.: Akt activation in platelets depends on Gi signaling pathways. J. Biol. Chem. 279(6), 4186–4195 (2004)CrossRefGoogle Scholar
  27. 27.
    Kutty, R.K., Chen, S., Samuel, W., Vijayasarathy, C., Duncan, T., Tsai, J.Y., Fariss, R.N., Carper, D., Jaworski, C., Wiggert, B.: Cell density-dependent nuclear/cytoplasmic localization of NORPEG (RAI14) protein. Mol. Cell Biol. Res. Commun. 345(4), 1333–1341 (2006)Google Scholar
  28. 28.
    Lee, J.H., Kim, S.H., Lee, E.S., Kim, Y.S.: CD24 overexpression in cancer development and progression: a meta-analysis. Oncol. Rep. 22(5), 1149–1156 (2009)Google Scholar
  29. 29.
    Li, Z., Zhou, Z., Welch, D.R., Donahue, H.J.: Expressing connexin 43 in breast cancer cells reduces their metastasis to lungs. Clin. Exp. Metastasis. 25(8), 893–901 (2008)CrossRefGoogle Scholar
  30. 30.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: LeCam, L.M., Neyman, N. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press, Berkeley (1967)Google Scholar
  31. 31.
    Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 35, D26–D31 (2007)CrossRefGoogle Scholar
  32. 32.
    Mikosz, C.A., Brickley, D.R., Sharkey, M.S., Moran, T.W., Conzen, S.D.: Glucocorticoid receptor-mediated protection from apoptosis is associated with induction of the serine/threonine survival kinase gene, sgk-1. J. Biol. Chem. 276, 16649–16654 (2001)CrossRefGoogle Scholar
  33. 33.
    Ng, C.J., Bourquard, N., Grijalva, V., Hama, S., Shih, D.M., Navab, M., Fogelman, A.M., Lusis, A.J., Young, S., Reddy, S.T.: Paraoxonase-2 deficiency aggravates atherosclerosis in mice despite lower apolipoprotein-B-containing lipoproteins: anti-atherogenic role for paraoxonase-2. J. Biol. Chem. 281(40), 29491–29500 (2006)CrossRefGoogle Scholar
  34. 34.
    Roberts, A.N., Leighton, B., Todd, J.A., Cockburn, D., Schofield, P.N., Sutton, R., Holt, S., Boyd, Y., Day, A.J., Foot, E.A.: Molecular and functional characterization of amylin, a peptide associated with type 2 diabetes mellitus. Proc. Natl. Acad. Sci. U.S.A. 86(24), 9662–9666 (1989)CrossRefGoogle Scholar
  35. 35.
    Raychaudhuri, S., Stuart, J.M., Altman, R.B.: Principal components analysis to summarize microarray experiments: application to sporulation time series. In: Altman, R.B., Dunker, A.K., Hunker, L., Lauderdale, K., Klein, T.E.D. (eds.) Proceedings of Pacific Symposium on Biocomputing, 4–9 January 2000, Hawaii, pp. 452–463 (2000)Google Scholar
  36. 36.
    Qin, H., Shao, Q., Curtis, H., Galipeau, J., Belliveau, D.J., Wang, T., Alaoui-Jamali, M.A., Laird, D.W.: Retroviral delivery of connexin genes to human breast tumor cells inhibits in vivo tumor growth by a mechanism that is independent of significant gap junctional intercellular communication. J. Biol. Chem. 277(32), 29132–29138 (2002)CrossRefGoogle Scholar
  37. 37.
    Sagiv, E., Arber, N.: The novel oncogene CD24 and its arising role in the carcinogenesis of the GI tract: from research to therapy. Expert Rev. Gastroenterol. Hepatol. 2(1), 125–133 (2008)CrossRefGoogle Scholar
  38. 38.
    Sato Y, Chen Z, Miyazaki K.. Strong suppression of tumor growth by insulin-like growth factor-binding protein-related protein 1/tumor-derived cell adhesion factor/mac25. Cancer Sci. 98(7), 1055–1063 (2007)CrossRefGoogle Scholar
  39. 39.
    Scanlan, M.J., Gordan, J.D., Williamson, B., Stockert, E., Bander, N.H., Jongeneel, V., Gure, A.O., Jger, D., Jger, E., Knuth, A., Chen, Y.T., Old, L.J.: Antigens recognized by autologous antibody in patients with renal-cell carcinoma. Int. J. Cancer 83(4), 456–464 (1999)CrossRefGoogle Scholar
  40. 40.
    Scherf, U., Ross, D.T., Waltham, M., Smith, L.H., Lee, J.K., Tanabe, L., Kohn, K.W., Reinhold, W.C., Myers, T.G., Andrews, D.T., Scudiero, D.A., Eisen, M.B., Sausville, E.A., Pommier, Y., Botstein, D., Brown, P.O., Weinstein, J.N.: A gene expression database for the molecular pharmacology of cancer. J. Nat. Genet. 66, 236–244 (2000)CrossRefGoogle Scholar
  41. 41.
    Slomnicki, L.P., Nawrot, B., Leniak, W.: S100A6 binds p53 and affects its activity. Int. J. Biochem. Cell. Biol. 41(4), 784–790 (2009)CrossRefGoogle Scholar
  42. 42.
    Sneath, P., Sokal, R.: Numerical Taxonomy: the Principles and Practice of Numerical Classification. Freeman, San Francisco (1973)MATHGoogle Scholar
  43. 43.
    Staunton, J.E., Slonim, D.K., Coller, H.A., Tamayo, P., Angelo, M.J., Park, J., Scherf, U., Lee, J.K., Reinhold, W.O., Weinstein, J.N., Mesirov, J.P., Lander, E.S., Golub, T.R.: Chemosensitivity prediction by transcriptional profiling. Proc. Natl. Acad. Sci. U.S.A. 98, 10787–10792 (2001)CrossRefGoogle Scholar
  44. 44.
    Toler, C.R., Taylor, D.D., Gercel-Taylor, C.: Loss of communication in ovarian cancer. Am. J. Obstet. Gynecol. 194(5), 27–31 (2006)CrossRefGoogle Scholar
  45. 45.
    Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained K-Means clustering with background knowledge. In: Brodley, C.E., Danyluk, A.P. (eds.) Proceedings of the Eighteenth International Conference on Machine Learning, 28 June–1 July 2001, Williamstown, Massachusetts, pp. 577–584 (2001)Google Scholar
  46. 46.
    Yap, L.F., Jenei, V., Robinson, C.M., Moutasim, K., Benn, T.M., Threadgold, S.P., Lopes, V., Wei, W., Thomas, G.J., Paterson, I.C.: Upregulation of Eps8 in oral squamous cell carcinoma promotes cell migration and invasion through integrin-dependent Rac1 activation. Oncogene 28, 2524–2534 (2009). doi:10.1038/onc.2009.105 CrossRefGoogle Scholar
  47. 47.
    Yap, L.F., Jenei, V., Robinson, C.M., Moutasim, K., Benn, T.M., Threadgold, S.P., Lopes, V., Wei, W., Thomas, G.J., Paterson, I.C.: Upregulation of Eps8 in oral squamous cell carcinoma promotes cell migration and invasion through integrin-dependent Rac1 activation. Oncogene 28(27), 2524–2534 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Elisabetta Fersini
    • 1
  • E. Messina
    • 1
  • F. Archetti
    • 1
    • 2
  • C. Manfredotti
    • 1
  1. 1.DISCoUniversity of Milano-BicoccaMilanItaly
  2. 2.Consorzio Milano RicercheMilanItaly

Personalised recommendations