Advertisement

Single- and Multi-Objective Cooperation for the Flexible Docking Problem

  • Jean-Charles Boisson
  • Laetitia Jourdan
  • El-Ghazali Talbi
  • Dragos Horvath
Article

Abstract

In this article, the impact of single-objective methods as intensification factors in a multi-objective approach is presented for the flexible docking problem. Based on a novel tri-objective model, a parallel multi-objective genetic algorithm has been designed. However, due to the high variability of the energy objective, intensification methods focused on this objective have been also included in order to improve the convergence speed of the genetic algorithm and the quality of the results. The corresponding approach, combining single- and multi-objective methods, has been proved efficient according to the tested instances and the quality criterion used.

Keywords

Multi-objective optimization Molecular docking Genetic algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boisson, J.-C., Jourdan, L., Talbi, E.-G., Horvath, D.: Parallel multi-objective algorithms for the molecular docking problem. In: IEEE 2008 Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Sun Valley Resort, Idaho, USA, 15–17 September 2008Google Scholar
  2. 2.
    Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004)CrossRefGoogle Scholar
  3. 3.
    Sanner, M.F., Olson, A.J., Spehner, J.C.: Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38(3), 305–320 (1996)CrossRefGoogle Scholar
  4. 4.
    Pedretti, A.A., Villa, L., Vistoli, G.: VEGA - an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J.C.A.M.D. 18, 167–173 (2004)CrossRefGoogle Scholar
  5. 5.
    Boisson, J-C., Jourdan, L., Talbi, E-G.: ParadisEO-MO: A Framework to Design Single Solution Metaheuristics. INRIA Technical report, INRIA Lille Nord Europe (2008)Google Scholar
  6. 6.
    Boisson, J-C.: Modélisation et résolution par métaheuristiques coopératives : de l’atome à la séquence protéique PhD Thesis, Université des Sciences et Technologie de Lille (2008)Google Scholar
  7. 7.
    Thomsen, R.: Protein-Ligand Docking with Evolutionary Algorithms Chapter in the book entitled Computational Intelligence in Bioinformatics (2008)Google Scholar
  8. 8.
    Lee, B., Richard, F.M.: The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971)CrossRefGoogle Scholar
  9. 9.
    Richard, F.M.: Areas, volumes, packing and protein structure. Annu. Rev. Biophys. Bioeng. 6, 151–176 (1977)CrossRefGoogle Scholar
  10. 10.
    Le Grand, S.M., Merz, K.M., Jr.: Rapid approximation to molecular surface area via the use of boolean logic and look-up tables. J. Comput. Chem. 14, 349–352 (1993)CrossRefGoogle Scholar
  11. 11.
    Leaver-Fay, A., Butterfoss, G.L., Snoeyink, J., Kuhlman, B.: Maintaining solvent accessible surface area under rotamer substitution for protein design. J. Comput. Chem. 28(8), 1336–1341 (2007)CrossRefGoogle Scholar
  12. 12.
    Shrake, A., Rupley, J.A.: Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79(2), 351–364 (1973)CrossRefGoogle Scholar
  13. 13.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 181–197 (2002)Google Scholar
  14. 14.
    Zitzler, E., Kunzli, S.: Indicator-based selection in multiobjective search. Parallel Problem Solving from Nature, PPSN VIII, vol. 3242, pp. 382–842. Springer, Germany (2004)Google Scholar
  15. 15.
    Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 416–423. San Mateo, California, USA, (1993)Google Scholar
  16. 16.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar
  17. 17.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization, In: Proceedings of the Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100 (2001)Google Scholar
  18. 18.
    Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Har, W.E., Belew, R.K., Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)CrossRefGoogle Scholar
  19. 19.
    Ewing, T.J.A., Kuntz, I.D.: Critical evaluation of search algorithms for automated molecular docking and database screening. J. Comput. Chem. 18(9), 1175–1189 (1997)CrossRefGoogle Scholar
  20. 20.
    Rarey, M., Kramer, B., Lengauer, T., Klebe, G.: A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261(3), 470–489 (1994)CrossRefGoogle Scholar
  21. 21.
    Bursulaya, B.D., Totrov, M., Abagyan, R., Brooks, C.L.: Comparative study of several algorithms for flexible ligand docking. J. Comput.-Aided Mol. Des. 17(11), 755–763 (2003)CrossRefGoogle Scholar
  22. 22.
    Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.-G.: ParadisEO-MOEO: a framework for multi-objective optimization. In: The Proceedings of EMO’2007, pp. 457–471 (2007)Google Scholar
  23. 23.
    Cahon, S., Melab, N., Talbi, E.-G.: ParadisEO: a framework for the reusable design of parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jean-Charles Boisson
    • 1
  • Laetitia Jourdan
    • 1
  • El-Ghazali Talbi
    • 1
  • Dragos Horvath
    • 1
  1. 1.INRIA Dolphin project team (Lille)“Infochimie” laboratoryStrasbourgFrance

Personalised recommendations