Protein Structure Prediction Using Bee Colony Optimization Metaheuristic

  • Rasmus FonsecaEmail author
  • Martin Paluszewski
  • Pawel Winter


Predicting the native structure of proteins is one of the most challenging problems in molecular biology. The goal is to determine the three-dimensional structure from the one-dimensional amino acid sequence. De novo prediction algorithms seek to do this by developing a representation of the proteins structure, an energy potential and some optimization algorithm that finds the structure with minimal energy. Bee Colony Optimization (BCO) is a relatively new approach to solving optimization problems based on the foraging behaviour of bees. Several variants of BCO have been suggested in the literature. We have devised a new variant that unifies the existing and is much more flexible with respect to replacing the various elements of the BCO. In particular, this applies to the choice of the local search as well as the method for generating scout locations and performing the waggle dance. We apply our BCO method to generate good solutions to the protein structure prediction problem. The results show that BCO generally finds better solutions than simulated annealing which so far has been the metaheuristic of choice for this problem.


Protein structure prediction Bee Colony Optimization Metaheuristic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbass, H.A.: MBO: marriage in honey bees optimization—a haplometrosis polygynous swarming approach. In: Proceedings of the 2001 Congress on Evolutionary Computation CEC2001, pp. 207–214 (2001)Google Scholar
  2. 2.
    Bahamish, H.A.A., Abdullah, R., Salam, R.A.: Protein conformational search using Bees Algorithm. In: Asia International Conference on Modelling and Simulation, pp. 911–916 (2008)Google Scholar
  3. 3.
    Boberg, J., Salakoski, T., Vihinen, M.: Selection of a representative set of structures from Brookhaven protein data bank. Proteins 14(2), 265–76 (1992)CrossRefGoogle Scholar
  4. 4.
    Chothia, C., Lesk, A.M.: The relation between the divergence of sequence and structure in proteins. EMBO J. 5, 823–826 (1986)Google Scholar
  5. 5.
    Hamelryck, T.: An amino acid has two sides: a new 2D measure provides a different view of solvent exposure. J. Proteins Struct. Funct. Bioinf. 59(1), 38–48 (2005)CrossRefGoogle Scholar
  6. 6.
    Hamelryck, T., Kent, J.T., Krogh, A.: Sampling realistic protein conformations using local structural bias. PLOS Computat. Biol. 2, e131 (2006)CrossRefGoogle Scholar
  7. 7.
    Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation; part I, graph partitioning. Oper. Res. 37(6), 865–892 (1989)zbMATHCrossRefGoogle Scholar
  8. 8.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes Univ., Engineering Faculty, Computer Engineering Department (2005)Google Scholar
  9. 9.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kryshtafovych, A., Fidelis, K., Moult, J.: Progress from CASP6 to CASP7. Proteins Struct. Funct. Bioinf. 69(S8), 194–207 (2007)CrossRefGoogle Scholar
  11. 11.
    Li, Z., Scheraga, H.A.: Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc. Natl. Acad. Sci. 84(19), 6611–6615 (1987)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Mayuko, T.S., Daisuke, T., Chieko, C., Hirokazu, T., Hideaki, U.: Protein structure prediction in structure based drug design. Curr. Med. Chem. 11(5), 551–558 (2004)CrossRefGoogle Scholar
  13. 13.
    McGuffin, L.J., Bryson, K., Jones, D.T.: The PSIPRED protein structure prediction server. Bioinformatics 16(4), 404–405 (2000)CrossRefGoogle Scholar
  14. 14.
    Paluszewski, M., Hamelryck, T., Winter, P.: Reconstructing protein structure from solvent exposure using tabu search. In: Algorithms for Molecular Biology (ALMOB) (2006)Google Scholar
  15. 15.
    Paluszewski, M., Winter, P.: EBBA: efficient branch and bound algorithm for protein decoy generation. Technical report. Department of Computer Science, Univ. of Copenhagen, vol. 08(08) (2008)Google Scholar
  16. 16.
    Paluszewski, M., Winter, P.: Protein decoy generation using branch and bound with efficient bounding. In: Proc. of the 8th Int. Workshop, WABI 2008, LNBI 5251, pp. 382–393 (2008)Google Scholar
  17. 17.
    Pham, D., Koc, E., Ghanbarzadeh, A., Otri, S., Rahim, S., Zaidi, M., Phrueksanant, J., Lee, J., Sahran, S., Sholedolu, M., Ridley, M., Mahmuddin, M., Al-Jabbouli, H., Darwish, A.H., Soroka, A., Packianather, M., Castellani, M.: The Bees Algorithm—a novel tool for optimisation problems. In: Proceedings of IPROMS 2006 Conference, pp. 454–461 (2006)Google Scholar
  18. 18.
    Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The Bees Algorithm. Technical report, MEC, Cardiff University, UK (2005)Google Scholar
  19. 19.
    Rohl, C.A., Strauss, C.E., Misura, K.M., Baker, D.: Protein structure prediction using Rosetta. Methods Enzymol. 383, 66–93 (2004)CrossRefGoogle Scholar
  20. 20.
    Sayle, R.: RasMol v2.5 a molecular visualisation program. Biomol. Struc. Glaxo Research and Development Greenford. Roger Sayle and Biomol. Struct. (1994)Google Scholar
  21. 21.
    Simons, K.T., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268(1), 209–25 (1997)CrossRefGoogle Scholar
  22. 22.
    Skolnick, J., Kolinski, A., Ortiz, A.R.: MONSSTER: a method for folding globular proteins with a small number of distance restraints. J. Mol. Biol. 265, 217–241 (1997)CrossRefGoogle Scholar
  23. 23.
    Song, J., Takemoto, K., Akutsu, T.: HSEpred: predict half-sphere exposure from protein sequences. Bioinformatics 24, 1489–1497 (2008)CrossRefGoogle Scholar
  24. 24.
    Vilhjalmsson, B., Hamelryck, T.: Predicting a new type of solvent exposure. In: ECCB, Computational Biology Madrid 05, P-C35, Poster (2005)Google Scholar
  25. 25.
    Yuan, Z.: Better prediction of protein contact number using a support vector regression analysis of amino acid sequence. BMC Bioinf. 6(1), 248 (2005)CrossRefGoogle Scholar
  26. 26.
    Zemla, A., Venclovas, C., Moult, J., Fidelis, K.: Processing and analysis of CASP3 protein structure predictions. Proteins Suppl 3, 22–29 (1999)CrossRefGoogle Scholar
  27. 27.
    Zhang, Y.: I-TASSER server for protein 3D structure prediction. BMC Bioinf. 9(1), 40 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Rasmus Fonseca
    • 1
    Email author
  • Martin Paluszewski
    • 2
  • Pawel Winter
    • 1
  1. 1.Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark
  2. 2.The Bioinformatics CentreUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations