A Hybrid of the Newton-GMRES and Electromagnetic Meta-Heuristic Methods for Solving Systems of Nonlinear Equations

Article

Abstract

Solving systems of nonlinear equations is perhaps one of the most difficult problems in all numerical computation. Although numerous methods have been developed to attack this class of numerical problems, one of the simplest and oldest methods, Newton’s method is arguably the most commonly used. As is well known, the convergence and performance characteristics of Newton’s method can be highly sensitive to the initial guess of the solution supplied to the method. In this paper a hybrid scheme is proposed, in which the Electromagnetic Meta-Heuristic method (EM) is used to supply a good initial guess of the solution to the finite difference version of the Newton-GMRES method (NG) for solving a system of nonlinear equations. Numerical examples are given in order to compare the performance of the hybrid of the EM and NG methods. Empirical results show that the proposed method is an efficient approach for solving systems of nonlinear equations.

Keywords

Systems of nonlinear equations Electromagnetism Meta-Heuristic method Newton-GMRES method 

AMS Subject Classifications

34A34 58C15 65H10 90C59 

References

  1. 1.
    Allgower, E.L., Georg, K. (eds.): Computational Solution of Nonlinear Systems of Equations. American Mathematical Society, Providence (1990)MATHGoogle Scholar
  2. 2.
  3. 3.
    Pinter, J.D.: Computational Global Optimization in Nonlinear Systems: An Interactive Tutorial. Lionhart, Atlanta (2001)MATHGoogle Scholar
  4. 4.
    Broyden, C.G., Luss, D.: A class of methods for solving nonlinear simultaneous equation. Math. Comput. 19, 577–593 (1965)MATHCrossRefGoogle Scholar
  5. 5.
    Martínez, J.M.: Algorithms for Solving Nonlinear Systems of Equations, pp. 81–108. Continuous Optimization (1994)Google Scholar
  6. 6.
    Hribar, M.B.: Methods for large-scale nonlinear programming and nonlinear systems of equations. Ph.D. dissertation, EECS Department, Northwestern University (1997)Google Scholar
  7. 7.
    Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)MATHGoogle Scholar
  8. 8.
    Rheinboldt, W.C.: Methods for Solving Systems of Nonlinear Equations, 2nd edn. SIAM, Philadelphia (1998)MATHGoogle Scholar
  9. 9.
    Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Brown, P.N.: A local convergence theory for combined inexact-Newton/finite-difference projection methods. SIAM J. Numer. Anal. 24(2), 407–434 (1987)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Statist. Comput. 11(3), 450–481 (1990)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Morini, B.: Convergence behaviour of inexact Newton methods. Math. Comp. 68, 1605–1613 (1999)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Argyros, I.K.: Convergence rates for inexact Newton-like methods at singular points and applications. Appl. Math. Comput. 102, 185–201 (1999)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Zecevic, A.I., Siljak, D.D.: A block-parallel Newton method via overlapping epsilon decompositions. SIAM J. Matrix Anal. Appl. 15(3), 824–844 (1994)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Yang, G., Dutto, L.C., Fortin, M.: Inexact block Jacobi-Broyden methods for solving nonlinear systems of equations. SIAM J. Sci. Comput. 18(5), 1367–1392 (1997)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Xu, J.J.: Convergence of partially asynchronous block Quasi-Newton methods for nonlinear systems of equations. J. Appl. Math. Comput. 103, 307–321 (1999)MATHCrossRefGoogle Scholar
  17. 17.
    Saad, Y.: Krylov subspace methods for solving unsymmetric linear systems. Math. Comp. 37, 105–126 (1981)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Heyouni, M.: Newton generalized Hessemberg method for solving nonlinear systems of equations. Numer. Agorithms 21, 225–246 (1999)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. SIAM, Philadelphia (2000)MATHGoogle Scholar
  21. 21.
    Dennis, J.E., Schnabel, R.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia (1996)MATHGoogle Scholar
  22. 22.
    Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2000)Google Scholar
  23. 23.
    Birbil, S.I., Fang, S.C.: An electromagnetism-like mechanism for global optimization. J. Glob. Optim. 25, 263–282 (2003)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Grosan, C., Abraham, A., Gelbukh, A.: Evolutionary Method for Nonlinear Systems of Equations. MICAI 2006: Advances in Artificial Intelligence, pp. 283–293. Springer, Berlin (2006)CrossRefGoogle Scholar
  25. 25.
    Effati, S., Nazemi, A.R.: A new method for solving a system of the nonlinear equations. Appl. Math. Comput. 168, 877–894 (2005)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Luksan, L.: Inexact trust region method for large sparse systems of nonlinear equations. J. Optim. Theory Appl. 81(3), 569–590 (1994)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Bogle, I.D.L., Perkins, J.D.: A new sparsity-preserving Quasi-Newton update for solving nonlinear equations. SIAM J. Sci. Statist. Comput. 11, 621–630 (1990)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Moré, J.J., Garbow, B.S., Hillström, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)MATHCrossRefGoogle Scholar
  29. 29.
    Toint, P.L.: Numerical solution of large sets of algebraic equations. Math. Comput. 46, 175–189 (1986)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Gomez-Ruggiero, M.A., Martínez, J.M., Moretti, A.C.: Comparing algorithms for solving sparse nonlinear systems of equations. SIAM J. Sci. Statist. Comput. 13, 459–483 (1992)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Li, G.: Successive column correction algorithms for solving sparse nonlinear systems of equations. Math. Program. 43, 187–207 (1989)MATHCrossRefGoogle Scholar
  32. 32.
    Friedlander, A., Gomes-Ruggiero, M.A., Kozakevich, D.N., Martinez, J.M., Santos, S.A.: Solving nonlinear systems of equations by means of Quasi-Newton methods with nonmonotone strategy. Optim. Methods Softw. 87, 25–51 (1997)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • F. Toutounian
    • 1
  • J. Saberi-Nadjafi
    • 1
  • S. H. Taheri
    • 1
    • 2
  1. 1.School of Mathematical SciencesFerdowsi University of MashhadMashhadIran
  2. 2.Department of MathematicsUniversity of KhayyamMashhadIran

Personalised recommendations