Determining the Optimum Stratum Boundaries Using Mathematical Programming

Abstract

The method of choosing the best boundaries that make strata internally homogeneous, given some sample allocation, is known as optimum stratification. In order to make the strata internally homogeneous, the strata are constructed in such a way that the strata variances should be as small as possible for the characteristic under study. In this paper the problem of determining optimum strata boundaries (OSB) is discussed when strata are formed based on a single auxiliary variable with a varying measurement cost per units across strata. The auxiliary variable considered in the problem is a size variable that holds a common model for a whole population. The OSB are achieved effectively by assuming a suitable distribution of the auxiliary variable and creating strata by cutting the range of the distribution at optimum points. The problem of finding the OSB, which minimizes the variance of the estimated population mean under a weighted stratified balanced sampling, is formulated as a mathematical programming problem (MPP). Treating the formulated MPP as a multistage decision problem, a solution procedure using dynamic programming technique is developed. A numerical example using a hospital population data is presented to illustrate the computational details of the solution procedure. A software program coded in JAVA is written to carry out the computation. The distribution of the auxiliary variable in this example is considered to be continuous with an exponential density function.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Aoyama, H.: A study of stratified random sampling. Ann. Inst. Stat. Math. 6, 1–36 (1954)

    MATH  Article  MathSciNet  Google Scholar 

  2. 2.

    Bellman, R.E.: Dynamic Programming. Princetown University Press, New Jersey (1957)

    Google Scholar 

  3. 3.

    Bühler, W., Deutler, T.: Optimal stratification and grouping by dynamic programming. Metrika 22, 161–175 (1975)

    MATH  Article  MathSciNet  Google Scholar 

  4. 4.

    Cochran, W.G.: Sampling Techniques. Wiley, New York (1977)

    Google Scholar 

  5. 5.

    Dalenius, T.: The problem of optimum stratification-II. Skand. Aktuarietidskr. 33, 203–213 (1950)

    MathSciNet  Google Scholar 

  6. 6.

    Dalenius, T., Gurney, M.: The problem of optimum stratification. Skand. Aktuarietidskr. 34, 133–148 (1951)

    MathSciNet  Google Scholar 

  7. 7.

    Dalenius, T., Hodges, J.L.: Minimum variance stratification. J. Am. Stat. Assoc. 54, 88–101 (1959)

    MATH  Article  Google Scholar 

  8. 8.

    Ekman, G.: Approximate expression for conditional mean and variance over small intervals of a continuous distribution. Ann. Inst. Stat. Math. 30, 1131–1134 (1959)

    MATH  MathSciNet  Google Scholar 

  9. 9.

    Godfrey, J., Roshwalb, A., Wright, R.: Model-based stratification in inventory cost estimation. J. Bus. Econ. Stat. 2, 1–9 (1984)

    Article  Google Scholar 

  10. 10.

    Gunning, P., Horgan, J.M.: A new algorithm for the construction of stratum boundaries in skewed populations. Sur. Methodol. 30(2), 159–166 (2004)

    Google Scholar 

  11. 11.

    Hansen, M.H., Hurwitz, W.H., Madow, W.G.: Sampling Survey Methods and Theory, vol. 1. Wiley, New York (1953)

    Google Scholar 

  12. 12.

    Hedlin, D.: A procedure for stratification by an extended Ekman rule. J. Off. Stat. 16, 15–29 (2000)

    Google Scholar 

  13. 13.

    Hidiroglou, M.A., Srinath, K.P.: Problems associated with designing subannual bussiness surveys. J. Bus. Econ. Stat. 11, 397–405 (1993)

    Article  Google Scholar 

  14. 14.

    Horgan, J.M.: Stratification of skewed populations: a review. Int. Stat. Rev. 74(1), 67–76 (2006)

    MATH  Google Scholar 

  15. 15.

    Keskintürk, T., Er, S.: A genetic algorithm approach to determine stratum boundaries and sample sizes of each stratum in stratified sampling. Comput. Stat. Data Anal. 52, 53–67 (2007)

    MATH  Article  Google Scholar 

  16. 16.

    Khan, E.A., Khan, M.G.M., Ahsan, M.J.: Optimum stratification: a mathematical programming approach. Calcutta Stat. Assoc. Bull. 52(Special volume), 323–333 (2002)

    MathSciNet  Google Scholar 

  17. 17.

    Khan, M.G.M., Najmussehar, Ahsan, M.J.: Optimum stratification for exponential study variable under Neyman allocation. J. Indian Soc. Agric. Stat. 59(2), 146–150 (2005)

    MathSciNet  Google Scholar 

  18. 18.

    Khan, M.G.M., Nand, N., Ahmad, N.: Determining the optimum strata boundary points using dynamic programming. Sur. Methodol. 34(2), 205–214 (2008)

    Google Scholar 

  19. 19.

    Kozak, M.: Optimal stratification using random search method in agricultural surveys. Stat. Transit. 6(5), 797–806 (2004)

    Google Scholar 

  20. 20.

    Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the Second Berkley Symposium on Mathematical Statistics and Probability. University of California Press, Berkley, pp. 481–492 (1951)

    Google Scholar 

  21. 21.

    Lavallée, P., Hidiroglou, M.: On the stratification of skewed populations. Sur. Methodol. 14, 3–43 (1988)

    Google Scholar 

  22. 22.

    Lednicki, B., Wieczorkowski, R.: Optimal stratification and sample allocation between subpopulations and strata. Stat. Transit. 6, 287–306 (2003)

    Google Scholar 

  23. 23.

    Mahalanobis, P.C.: Some aspect of the design of sample surveys. Sankhya 12, 1–17 (1952)

    MATH  MathSciNet  Google Scholar 

  24. 24.

    Rivest, L.P.: A generalization of Lavallée and Hidiroglou algorithm for stratification in business survey. Sur. Methodol. 28, 191–198 (2002)

    Google Scholar 

  25. 25.

    Särndal, C.E., Swensson, B., Wretman, J.: Model Assisted Survey Sampling. Springer-Verlag, New York (1992)

    Google Scholar 

  26. 26.

    Sethi, V.K.: A note on optimum stratification of population for estimating the population mean. Aust. J. Stat. 5, 20–33 (1963)

    MATH  Article  Google Scholar 

  27. 27.

    Sweet, E.M., Sigman, R.S.: Evaluation of model-assisted procedures for stratifying skewed populations using auxiliary data. In: Proceedings of the Survey Research Methods Section, ASA, pp. 491–496 (1995)

  28. 28.

    Taha, H.A.: Operations Research: An Introduction. Pearson Prentice Hall, New Jersey (2007)

    Google Scholar 

  29. 29.

    Unnithan, V.K.G.: The minimum variance boundry points of stratification. Sankhya 40C, 60–72 (1978)

    Google Scholar 

  30. 30.

    Valliant, R., Dorfman, A.H., Royall, R.M.: Finite Population Sampling and Inference: A Prediction Approach. Wiley, New York (2000). ftp://ftp.wiley.com/public/sci_tech_med/finite_population

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. G. M. Khan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khan, M.G.M., Ahmad, N. & Khan, S. Determining the Optimum Stratum Boundaries Using Mathematical Programming. J Math Model Algor 8, 409 (2009). https://doi.org/10.1007/s10852-009-9115-3

Download citation

Keywords

  • Weighted stratified balanced sampling
  • Optimum stratification
  • Mathematical programming problem
  • Dynamic programming