Advertisement

A Practical Approach for Robust and Flexible Vehicle Routing Using Metaheuristics and Monte Carlo Sampling

  • Kenneth Sörensen
  • Marc Sevaux
Article

Abstract

In this paper, we investigate how robust and flexible solutions of a number of stochastic variants of the capacitated vehicle routing problem can be obtained. To this end, we develop and discuss a method that combines a sampling based approach to estimate the robustness or flexibility of a solution with a metaheuristic optimization technique. This combination allows us to solve larger problems with more complex stochastic structures than traditional methods based on stochastic programming. It is also more flexible in the sense that adaptation of the approach to more complex problems can be easily done. We explicitly recognize the fact that the decision maker’s risk preference should be taken into account when choosing a robust or flexible solution and show how this can be done using our approach.

Keywords

Stochastic vehicle routing Robustness Flexibility Monte Carlo sampling Metaheuristics Memetic algorithm 

References

  1. 1.
    Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Financ. 9(3), 203–228 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bellman, R.: On a routing problem. Q. J. Appl. Math. 16(1), 87–90 (1958)zbMATHGoogle Scholar
  3. 3.
    Bertsimas, D.J.: A vehicle routing problem with stochastic demand. Oper. Res. 40, 574–585 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bianci, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on metaheuristics for stochastic combinatorial optimization. Nat. Comput. 8(2), 239–287 (2008). doi: 10.1007/s11047-008-9098-4 CrossRefGoogle Scholar
  5. 5.
    Birge, J.R.: Stochastic programming computation and applications. INFORMS J. Comput. 9, 111–133 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer, Dordrecht (2001)Google Scholar
  7. 7.
    Chepuri, K., Homem-de Mello, T.: Solving the vehicle routing problem with stochastic demands using the cross-entropy method. Ann. Oper. Res. 134(1), 153–181 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Christofides, N., Mingozzi, A., Toth, P., Sandi, C.: Combinatorial Optimization. Wiley, Chichester (1979)zbMATHGoogle Scholar
  9. 9.
    Dias, L.C., Clímaco, J.: On computing ELECTRE’s credibility indices under partial information. J. Multi-criteria Decis. Anal. 8, 74–92 (1999)zbMATHCrossRefGoogle Scholar
  10. 10.
    Dror, M.: Vehicle routing with stochastic demands: properties and solution frameworks. Transp. Sci. 23(3), 166–176 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dror, M., Laporte, G., Louveaux, F.V.: Vehicle routing with stochastic demands and restricted failures. Math. Methods Oper. Res. (ZOR) 37(3), 273–283 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gendreau, M., Laporte, G., Seguin, R.: An exact algorithm for the vehicle routing problem with stochastic demands and customers. Transp. Sci. 29(2), 143–155 (1995)zbMATHCrossRefGoogle Scholar
  13. 13.
    Gendreau, M., Laporte, G., Séguin, R.: Stochastic vehicle routing. Eur. J. Oper. Res. 88, 3–12 (1996)zbMATHCrossRefGoogle Scholar
  14. 14.
    Goetschalckx, M., Ahmed, S., Shapiro, A., Santoso, T.: Designing flexible and robust supply chains. In: Artiba, A. (ed.) Proceedings of the International Conference on Industrial Engineering and Production Management, pp. 539–551, Quebec, Canada (2001)Google Scholar
  15. 15.
    Haughton, M.A.: The performance of route modification and demand stabilization strategies in stochastic vehicle routing. Transp. Res. Part B 32(8), 551–566 (1998)CrossRefGoogle Scholar
  16. 16.
    Haughton, M.A., Stenger, A.J.: Comparing strategies for addressing delivery shortages in stochastic demand settings. Transp. Res., Part E 35(1), 25–41 (1999)CrossRefGoogle Scholar
  17. 17.
    Higle, J.L., Sen, S.: Stochastic decomposition: an algorithm for two stage stochastic linear programs with recourse. Math. Oper. Res. 16, 650–669 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Homem-De-Mello, T.: Variable-sample methods for stochastic optimization. ACM Trans. Model. Comput. Simul. (TOMACS) 13(2), 108–133 (2003)CrossRefGoogle Scholar
  19. 19.
    Hvattum, L.M., Lokketangen, A., Laporte, G.: A branch-and-regret heuristic for stochastic and dynamic vehicle routing problems. Networks 49(4), 330 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Infanger, G.: Planning Under Uncertainty: Solving Large Scale Stochastic Linear Programs. Boydand Fraser, Danvers (1994)zbMATHGoogle Scholar
  21. 21.
    Jagannathan, R.: Use of sample information in stochastic recourse and chance-constrained programming models. Manage. Sci. 31, 96–108 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kelton, W.D., Sadowski, R.P., Sturrock, D.T.: Simulation with Arena. McGraw-Hill, London (2003)Google Scholar
  23. 23.
    Kenyon, A.S., Morton, D.P.: Stochastic vehicle routing with random travel times. Transp. Sci. 37(1), 69 (2003)CrossRefGoogle Scholar
  24. 24.
    Kleywegt, A.J., Shapiro, A., Homem-de-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12, 479–502 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Kouvelis, P., Yu, G.: Robust discrete optimisation and its applications. In: Nonconvex Optimization and its Applications, vol. 14. Kluwer, Dordrecht (1997)Google Scholar
  26. 26.
    Lambert, V., Laporte, G., Louveaux, F.V.: Designing collection routes through bank branches. Comput. Oper. Res. 20, 783–791 (1993)CrossRefGoogle Scholar
  27. 27.
    Laporte, G., Louveaux, F.C.V., van Hamme, L.: An integer L-shaped algorithm for the capacitated vehicle routing problem with stochastic demands. Oper. Res. 50(3), 415 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis. McGraw-Hill, London (1999)Google Scholar
  29. 29.
    Mulvey, J.M., Vanderbei, R.J., Zenios, S.A.: Robust optimization of large-scale systems. Oper. Res. 43, 264–281 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Norkin, V.I., Ermoliev, Y.M., Ruszczyński, A.: On optimal allocation of indivisibles under uncertainty. Oper. Res. 46, 381–395 (1998)zbMATHCrossRefGoogle Scholar
  31. 31.
    Norkin, V.I., Pflug, G.Ch., Ruszczyński, A.: A branch and bound method for stochastic global optimization. Math. Program. 83, 425–450 (1998)zbMATHGoogle Scholar
  32. 32.
    Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Comput. Oper. Res. 31(12), 1985–2002 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Reimann, M.: Analysing risk orientation in a stochastic VRP. Eur. J. Ind. Eng. 1(2), 111–130 (2007)CrossRefGoogle Scholar
  34. 34.
    Roy, B.: A missing link in OR-DA: robustness analysis. Found. Comput. Decis. Sci. 23, 141–160 (1998)zbMATHGoogle Scholar
  35. 35.
    Secomandi, N.: Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands. Comput. Oper. Res. 27(11–12), 1201–1225 (2000)zbMATHCrossRefGoogle Scholar
  36. 36.
    Secomandi, N.: A rollout policy for the vehicle routing problem with stochastic demands. Oper. Res. 49(5), 796 (2001)zbMATHCrossRefGoogle Scholar
  37. 37.
    Secomandi, N.: Analysis of a rollout approach to sequencing problems with stochastic routing applications. J. Heuristics 9(4), 321–352 (2003)zbMATHCrossRefGoogle Scholar
  38. 38.
    Sörensen, K.: A framework for robust and flexible optimisation using metaheuristics with applications in supply chain design. Ph.D. thesis, University of Antwerp, Belgium (2003)Google Scholar
  39. 39.
    Sörensen, K.: Route stability in vehicle routing decisions: a bi-objective approach using metaheuristics. Cent. Eur. J. Oper. Res. 14, 193–207 (2006)zbMATHCrossRefGoogle Scholar
  40. 40.
    Sörensen, K.: Investigation of practical robust and flexible decisions for facility location problems using tabu search and simulation. J. Oper. Res. Soc. 59, 624–636 (2008)zbMATHCrossRefGoogle Scholar
  41. 41.
    Sörensen, K., Sevaux, M.: MA|PM: memetic algorithms with population management. Comput. Oper. Res. 33(5), 1214–1225 (2005)CrossRefGoogle Scholar
  42. 42.
    Stewart, W.R., Golden, B.L.: Stochastic vehicle routing: a comprehensive approach. Eur. J. Oper. Res. 14, 371–385 (1983)zbMATHCrossRefGoogle Scholar
  43. 43.
    Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia (2001)Google Scholar
  44. 44.
    Verweij, B., Ahmed, S., Kleywegt, A.J., Nemhauser, G., Shapiro, A.: The sample average approximation method applied to stochastic routing problems: a computational study. Comput. Optim. Appl. 24, 289–333 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Vincke, P.: Robust solutions and methods in decision aid. J. Multi-criteria Decis. Anal. 8, 181–187 (1999)zbMATHCrossRefGoogle Scholar
  46. 46.
    Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21, 168–173 (1974)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Faculty of Applied EconomicsUniversiteit AntwerpenAntwerpBelgium
  2. 2.Lab-STICC - UEBUniversité de Bretagne-SudLorientFrance

Personalised recommendations