A Fast Robust Algorithm for Computing Discrete Voronoi Diagrams

  • Mirko VelićEmail author
  • Dave May
  • Louis Moresi


We describe an algorithm for the construction of discretized Voronoi diagrams on a CPU within the context of a large scale numerical fluid simulation. The Discrete Voronoi Chain (DVC) algorithm is fast, flexible and robust. The algorithm stores the Voronoi diagram on a grid or lattice that may be structured or unstructured. The Voronoi diagram is computed by alternatively updating two lists of grid cells per particle to propagate a growth boundary of cells from the particle locations. Distance tests only occur when growth boundaries from different particles collide with each other, hence the number of distance tests is effectively minimized. We give some empirical results for two and three dimensions. The method generalizes to any dimension in a straight forward manner. The distance tests can be based any metric.


Discrete Voronoi Particle-in-cell FEM Quadrature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moresi, L., Dufour, F., Mühlhaus, H.B.: A lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. J. Comput. Phys. 184, 476–497 (2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs (1987)zbMATHGoogle Scholar
  3. 3.
    Tzionas, P.G., Thanailakis, A., Tsalides, P.G.: Collision-free path planning for a diamond-shaped robot using two-dimensional cellular automata. IEEE Trans. Robot. Autom. 13(2), 237–250 (1997)CrossRefGoogle Scholar
  4. 4.
    Tsai, Y.: Rapid and accurate computation of the distance function using grids. J. Comput. Phys. 178(1), 175–195 (2002). ISSN 0021-9991. doi:10.1006/jcph.2002.7028 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bespamyatnikh, S., Segal, M.: Fast algorithms for approximating distances. Algorithmica 33, 263–269 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Mauch, S.: A fast algorithm for computing the closest point and distance transform. Technical report, Caltech (2000)Google Scholar
  7. 7.
    Rong, G., Tan, T.S.: Jump flooding in GPU with applications to Voronoi diagram and distance transform. In: I3D ’06: Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games, pp. 109–116. ACM, New York (2006). ISBN 1-59593-295-X. doi:10.1145/1111411.1111431
  8. 8.
    Rong, G.: Jump flooding algorithm on graphics hardware and it’s applications. Ph.D. thesis, National University of Singapore (2007)Google Scholar
  9. 9.
    Sud, A., Govindaraju, N., Manocha, D.: Interactive computation of discrete generalized Voronoi diagrams using range culling. In: Proc. 2nd International Symposium on Voronoi Diagrams in Science and Engineering. Hanyang University, October 2005Google Scholar
  10. 10.
    Mirtich, B.: V-clip: fast and robust polyhedral collision detection. ACM Trans. Graph. 17(3), 177–208, July (1998)CrossRefGoogle Scholar
  11. 11.
    Sud, A., Govindaraju, N., Gayle, R., Kabul, I., Manocha, D.: Fast proximity computation among deformable models using discrete Voronoi diagrams. ACM Trans. Graph. 25(3), 1144–1153 (2006). ISSN 0730-0301. doi:10.1145/1141911.1142006 CrossRefGoogle Scholar
  12. 12.
    Hu, S.Y., Liao, G.M.: Scalable peer-to-peer networked virtual environment. In: NetGames ’04: Proceedings of 3rd ACM SIGCOMM Workshop on Network and System Support for Games, pp. 129–133. ACM, New York (2004). ISBN 1-58113-942-X. doi:10.1145/1016540.1016552
  13. 13.
    Adamatzky, A.I.: Voronoi-like partition of lattice in cellular automata. Math. Comput. Model. 23(4), 51–66 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Adamatzky, A.I., Holland, O.: Voronoi-like nondeterministic partition of lattice by collectives of finite automata. Math. Comput. Model. 28(10), 73–93 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991). ISSN 0360-0300. doi:10.1145/116873.116880 CrossRefGoogle Scholar
  16. 16.
    Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and Applications of Voronoi diagrams. Wiley, New York (1992). ISBN 0-471-93430-5zbMATHGoogle Scholar
  17. 17.
    Sambridge, M.S., Braun, J., McQueen H.: Geophysical parametrization and interpolation of irregular data using natural neighbours. Geophys. J. Int. 122, 837–857 (1995)CrossRefGoogle Scholar
  18. 18.
    May, D.A.: Ph.D. thesis, Monash University (2008)Google Scholar
  19. 19.
    Vleugels, J., Overmars, M.: Approximating Voronoi diagrams of convex sites in any dimension. Int. J. Comput. Geom. Appl. 8(2), 201–221 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kenneth, E., Hoff, I., Keyser, J., Lin, M., Manocha, D., Culver, T.: Fast computation of generalized Voronoi diagrams using graphics hardware. In: SIGGRAPH ’99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 277–286. ACM/Addison-Wesley, New York (1999). ISBN 0-201-48560-5. doi:10.1145/311535.311567

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Mathematical SciencesMonash UniversityClaytonAustralia

Personalised recommendations