Journal of Mathematical Modelling and Algorithms

, Volume 6, Issue 3, pp 361–391 | Cite as

Finding Edge-disjoint Paths in Networks: An Ant Colony Optimization Algorithm

Article

Abstract

One of the basic operations in communication networks consists in establishing routes for connection requests between physically separated network nodes. In many situations, either due to technical constraints or to quality-of-service and survivability requirements, it is required that no two routes interfere with each other. These requirements apply in particular to routing and admission control in large-scale, high-speed and optical networks. The same requirements also arise in a multitude of other applications such as real-time communications, vlsi design, scheduling, bin packing, and load balancing. This problem can be modeled as a combinatorial optimization problem as follows. Given a graph G representing a network topology, and a collection T={(s1,t1)...(sk,tk)} of pairs of vertices in G representing connection request, the maximum edge-disjoint paths problem is an NP-hard problem that consists in determining the maximum number of pairs in T that can be routed in G by mutually edge-disjoint siti paths. We propose an ant colony optimization (aco) algorithm to solve this problem. aco algorithms are approximate algorithms that are inspired by the foraging behavior of real ants. The decentralized nature of these algorithms makes them suitable for the application to problems arising in large-scale environments. First, we propose a basic version of our algorithm in order to outline its main features. In a subsequent step we propose several extensions of the basic algorithm and we conduct an extensive parameter tuning in order to show the usefulness of those extensions. In comparison to a multi-start greedy approach, our algorithm generates in general solutions of higher quality in a shorter amount of time. In particular the run-time behaviour of our algorithm is one of its important advantages.

Keywords

Ant colony optimization Maximum edge-disjoint paths problem 

Abbreviations

EDP

(maximum) edge-disjoint paths problem

SGA

Simple Greedy Algorithm

MSGA

Multi-start Greedy Algorithm

ACS

Ant Colony System

ACO

Ant Colony Optimization

Mathematics Subject Classifications (2000)

90-08 68Wxx 68T20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, A., Bar-Noy, A., Coppersmith, D., Ramaswami, R., Schieber, B., Sudan, M.: Efficient routing and scheduling algorithms for optical networks. In: 5th. ACM-SIAM Symposium on Discrete Algorithms (SODA’94), pp. 412–423. SIAM (1994)Google Scholar
  2. 2.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)MATHCrossRefGoogle Scholar
  3. 3.
    Aumann, Y., Rabani, Y.: Improved bounds for all-optical routing. In: 6th. ACM-SIAM Symposium on Discrete Algorithms (SODA’95), pp. 567–576. SIAM, Philadelphia, PA (1995)Google Scholar
  4. 4.
    Awerbuch, B., Gawlick, R., Leighton, F., Rabani, Y.: On-line admission control and circuit routing for high performance computing and communication. In: 35th IEEE Symposium on Foundations of Computer Science (FOCS’94), pp. 412–423. IEEE Computer Society Press, Los Alamitos, CA (1994)Google Scholar
  5. 5.
    Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)CrossRefGoogle Scholar
  6. 6.
    Baveja, A., Srinivasan, A.: Approximation algorithms for disjoint paths and related routing and packing problems. Math. Oper. Res. 25(2), 255–280 (2000)MATHCrossRefGoogle Scholar
  7. 7.
    Blesa, M., Blum, C.: Ant colony optimization for the maximum edge-disjoint paths problem. In: 1st European Workshop on Evolutionary Computation in Communications, Networks, and Connected Systems (EvoCOMNET’04). Lecture Notes in Computer Science, vol. 3005, pp. 160–169. Springer, Berlin Heidelberg New York (2004)Google Scholar
  8. 8.
    Blesa, M., Blum, C.: Finding edge-disjoint paths with artificial ant colonies. Technical Report LSI-05-13-R, Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya (2005)Google Scholar
  9. 9.
    Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(2), 1161–1172 (2004)CrossRefGoogle Scholar
  10. 10.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)CrossRefGoogle Scholar
  11. 11.
    Brandes, U., Wagner, D.: A linear time algorithm for the arc disjoint menger problem in planar directed graphs. Algorithmica 28(1), 16–36 (2000)MATHCrossRefGoogle Scholar
  12. 12.
    Chekuri, C., Khanna, S.: Edge disjoint paths revisited. In: 14th annual ACM-SIAM Symposium on Discrete algorithms (SODA’03), pp. 628–637. SIAM, Philadelphia, PA (2003)Google Scholar
  13. 13.
    Costa, M.-C., Létocart, L., Roupin, F.: Multicut and integral multiflow: a survey. Eur. J. Oper. Res. 162(1), 55–69 (2005)MATHCrossRefGoogle Scholar
  14. 14.
    Di Caro, G., Dorigo, M.: AntNet: distributed stigmergetic control for communications networks. J. Artif. Intell. Res. 9, 317–365 (1998)MATHGoogle Scholar
  15. 15.
    Di Caro, G., Ducatelle, F., Gambardella, L.M.: AntHocNet: an adaptive nature-inspired algorithm for routing in mobile ad hoc networks. Eur. Trans. Telecommun. 16(5), 443–455 (2005)CrossRefGoogle Scholar
  16. 16.
    Dorigo, M.: Ottimizzazione, Apprendimento Automatico, ed Algoritmi basati su Metafora Naturale. PhD thesis, DEI, Politecnico di Milano, Milan, Italy (1992)Google Scholar
  17. 17.
    Dorigo, M., Gambardella, L.: Ant Colony System: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  18. 18.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cyber., Part B, Cybern. 26(1), 29–41 (1996)CrossRefGoogle Scholar
  19. 19.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA (2004)MATHGoogle Scholar
  20. 20.
    Erlebach, T.: Approximation algorithms and complexity results for path problems in trees of rings. In: 26th International Symposium on Mathematical Foundations of Computer Science (mfcs’01). Lecture Notes in Computer Science, vol. 2136, pp. 351–362. Springer, Berlin Heidelberg New York (2001)Google Scholar
  21. 21.
    Gambardella, L., Dorigo, M.: Solving symmetric and asymmetric TSPs by ant colonies. In: IEEE International Conference on Evolutionary Computation (icec’96), pp. 622–627. IEEE Computer Society Press, Los Alamitos, CA (1996)CrossRefGoogle Scholar
  22. 22.
    Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)MATHCrossRefGoogle Scholar
  23. 23.
    Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-optimal hardness results and approximation algorithms for edge-disjoint paths and related problems. J. Comput. Syst. Sci. 67b(3), 473–496 (2003)CrossRefGoogle Scholar
  24. 24.
    Hromkovič, J., Klasing, R., Stöhr, E., Wagener, H.: Gossiping in vertex-disjoing paths mode in d-dimensional grids and planar graphs. In: 1st Annual European Symposium on Algorithms (ESA’93). Lecture Notes in Computer Science, vol. 726, pp. 200–211. Springer, Berlin Heidelberg New York (1993)Google Scholar
  25. 25.
    Karp, R.: Compexity of computer computations, Chapter Reducibility Among Combinatorial Problems, pp. 85–103. Plenum, New York (1972)Google Scholar
  26. 26.
    Kleinberg, J.: Approximation algorithms for disjoint paths problems. PhD thesis, MIT Press, Cambridge, USA (1996)Google Scholar
  27. 27.
    Kolliopoulos, S., Stein, C.: Approximating disjoint-path problems using packing integer programs. Math. Program. 99(1), 63–87 (2004)MATHCrossRefGoogle Scholar
  28. 28.
    Kolman, P., Scheideler, C.: Simple on-line algorithms for the maximum disjoint paths problem. In: 13th ACM Symposium on Parallel Algorithms and Architectures (SPAA’01), pp. 38–47. ACM Press, New York (2001)Google Scholar
  29. 29.
    Kolman, P., Scheideler, C.: Improved bounds for the unsplittable flow problem. In: 13th annual ACM-SIAM symposium on Discrete algorithms (SODA’02), pp. 184–193. SIAM, Philadelphia, PA (2002)Google Scholar
  30. 30.
    Kramer, M., van Leeuwen, J.: Advances in computing research. In: VLSI theory. The complexity of wire-routing and finding minimum area layouts for arbitrary VLSI circuits, vol. 2, pp. 129–146. JAI Press, Greenwhich, CT (1984)Google Scholar
  31. 31.
    Ma, B., Wang, L.: On the inapproximability of disjoint paths and minimum steiner forest with bandwidth constraints. J. Comput. Syst. Sci. 60(1), 1–12 (2000)MATHCrossRefGoogle Scholar
  32. 32.
    Marx, D.: Eulerian disjoint paths problem in grid graphs is NP-complete. Discrete Appl. Math. 143(1–3), 336–341 (2004)MATHCrossRefGoogle Scholar
  33. 33.
    Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: Boston University Representative Internet Topoloy Generator. http://cs-pub.bu.edu/brite/index.htm (2001)
  34. 34.
    Middendorf, M., Pfeiffer, F.: On the complexity of the disjoint path problem. Combinatorica 13(1), 97–107 (1993)MATHCrossRefGoogle Scholar
  35. 35.
    Nishizeki, T., Vygen, J., Zhou, X.: The edge-disjoint paths problem is np-complete for series-parallel graphs. Discrete Appl. Math. 115(1–3), 177–186 (2001)MATHCrossRefGoogle Scholar
  36. 36.
    Nowé, A., Verbeeck, K., Vrancx, P.: Multi-type ant colony: the edge disjoint paths problem. In: 4th International Workshop on Ant Colony Optimization and Swarm Intelligence (ANTS’04). Lecture Notes in Computer Science, vol. 3172, pp. 202–213. Springer, Berlin Heidelberg New York (2004)Google Scholar
  37. 37.
    Raghavan, P., Upfal, E.: Efficient all-optical routing. In: 26th. Annual ACM Symposium on Theory of Computing (stoc’94), pp. 134–143. ACM Press, New York (1994)Google Scholar
  38. 38.
    Ripphausen-Lipa, H., Wagner, D., Weihe, K.: The vertex-disjoint Menger problem in planar graphs. SIAM J. Comput. 26(2), 331–349 (1997)MATHCrossRefGoogle Scholar
  39. 39.
    Sidhu, D., Nair, R., Abdallah, S.: Finding disjoint paths in networks. ACM SIGCOMM Computer Communication Review 21(4), 43–51 (1991)CrossRefGoogle Scholar
  40. 40.
    Srinivasan, A.: Improved approximations for edge-disjoint paths, unsplittable flow and related routing problems. In: 38th Annual IEEE Symposium on Foundations of Computer Science (focs’97), pp. 416–425. IEEE Computer Society Press, Los Alamitos, CA (1997)CrossRefGoogle Scholar
  41. 41.
    Stützle, T., Hoos, H.: \(\mathcal {MAX-MIN}\) ant system. Future Gener. Comput. Syst. 16(8), 889–914 (2000)CrossRefGoogle Scholar
  42. 42.
    Varadarajan, K., Venkataraman, G.: Graph decomposition and a greedy algorithm for edge-disjoint paths. In: 15th annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04), pp. 379–380. SIAM, Philadelphia, PA (2004)Google Scholar
  43. 43.
    Vygen, J.: NP-completeness of some edge-disjoint paths problems. Discrete Appl. Math. 61(1), 83–90 (1995)MATHCrossRefGoogle Scholar
  44. 44.
    Waxman, B.: Routing of multipoint connections. IEEE J. Sel. Areas Commun. 6(9), 1671–1622 (1988)CrossRefGoogle Scholar
  45. 45.
    Weihe, K.: Edge-disjoint (st)-paths in undirected planar graphs in linear time. J. Algorithms 23(1), 121–138 (1997)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.ALBCOM research group, Dept. Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations