Integrated Shipment Dispatching and Packing Problems: a Case Study

  • Andrea AttanasioEmail author
  • Antonio Fuduli
  • Gianpaolo Ghiani
  • Chefi Triki


In this paper we examine a consolidation and dispatching problem motivated by a multinational chemical company which has to decide routinely the best way of delivering a set of orders to its customers over a multi-day planning horizon. Every day the decision to be made includes order consolidation, vehicle dispatching as well as load packing into the vehicles. We develop a heuristic based on a cutting plane framework, in which a simplified Integer Linear Program (ILP) is solved to optimality. Since the ILP solution may correspond to a infeasible loading plan, a feasibility check is performed through a tailored heuristic for a three-dimensional bin packing problem with side constraints. If this test fails, a cut able to remove the infeasible solution is generated and added to the simplified ILP. Then the procedure is iterated. Computational results show that our procedure allows achieving remarkable cost savings.


shipment consolidation vehicle dispatching bin packing 

Mathematics Subject Classification (2000)

90B06 90B90 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agbegha, G.Y., Ballou, R.H., Mathur, K.: Optimizing auto-carrier loading. Transp. Sci. 32(1), 174–188 (1998)zbMATHGoogle Scholar
  2. 2.
    Bertazzi, L., Bertsekas, D.P., Speranza, M.G.: Optimal and neuro-dynamic programming solutions for a stochastic inventory transportation problem. In: Kischka P., Leopold-Wildburger U., Mohring, R.H. Radermacher F.J. (eds.) Models, Methods and Decision Support for Management, pp. 65–78. Physica-Verlag (2001)Google Scholar
  3. 3.
    Bertazzi, L., Speranza, M.G.: Models and algorithms for the minimization of inventory and transportation costs: a survey. In: Speranza, M.G., Staehly, P. (eds.) New Trends in Distribution Logistics Lecture Notes in Economics and Mathematical Systems, vol. 480, pp. 137–157. Springer, Berlin Heidelberg New York (1999)Google Scholar
  4. 4.
    Bertazzi, L., Paletta, G., Speranza, M.G.: Minimizing the total cost in an integrated vendor-managed inventory System. J. Heur. 11(5–6) (2005)Google Scholar
  5. 5.
    Crainic, T.G., Laporte, G.: Planning models for freight transportation. Eur. J. Oper. Res. 97, 409–438 (1997)CrossRefzbMATHGoogle Scholar
  6. 6.
    Crainic, T.G.: Long-haul freight transportation. In: Hall, R.W. (ed.) Handbook of Transportation Science, pp. 451–516. Kluwer, Norwell, Massachussets (2003)CrossRefGoogle Scholar
  7. 7.
    Dowsland, K.A., Dowsland, W.B.: Packing problems. Eur. J. Oper. Res. 56, 2–14 (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    Farvolden, J.M., Powell, W.B.: Subgradient optimization for the service network design problem. Transp. Sci. 28(3), 256–272 (1996)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Golden, B.L., Assad, A.A. (eds.): Vehicle Routing: Methods and Studies. North-Holland, Amsterdam (1988)zbMATHGoogle Scholar
  10. 10.
    Iori, M., Salazar Gonzalez, J.J., Vigo, D.: An exact approach for the vehicle routing problem with two-dimensional loading constraints. Report OR-04-6, University of Bologna, Italy (2004)Google Scholar
  11. 11.
    Laporte, G.: The vehicle routing problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59, 345–358 (1992)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: a survey. Eur. J. Oper. Res. 141(2), 241–252 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Lodi, A., Martello, S., Vigo, D.: TSpack: a unified tabu search code for multi-dimensional bin packing problems. Ann. Oper. Res. 131(1–4), 203–213 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Powell, W.B.: A local improvement heuristic for the design of less-than-truckload motor carrier networks. Transp. Sci. 20(4), 246–257 (1986)Google Scholar
  15. 15.
    Sarmiento, A.M., Nagi, R.: A review of integrated analysis of production distribution systems. IIE Trans. 31, 1061–1074 (1999)CrossRefGoogle Scholar
  16. 16.
    Tadei, R., Perboli, G., Della Croce, F.: A heuristic algorithm for the Auto-Carrier transportation problem. Transp. Sci. 36(1), 55–62 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem Monographs on Discrete Mathematics and Applications S.I.A.M., Philadelpia, Pennsylvania (2002)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • Andrea Attanasio
    • 1
    Email author
  • Antonio Fuduli
    • 2
  • Gianpaolo Ghiani
    • 3
  • Chefi Triki
    • 4
  1. 1.Dipartimento di Elettronica, Informatica e SistemisticaUniversità degli Studi della CalabriaRende (CS)Italy
  2. 2.Dipartimento di MatematicaUniversità degli Studi della CalabriaRende (CS)Italy
  3. 3.Dipartimento di Ingegneria dell’InnovazioneUniversità degli Studi di LecceLecceItaly
  4. 4.Dipartimento di MatematicaUniversità degli Studi di LecceLecceItaly

Personalised recommendations