Hybrid Metaheuristics for the Vehicle Routing Problem with Stochastic Demands

  • Leonora Bianchi
  • Mauro Birattari
  • Marco Chiarandini
  • Max Manfrin
  • Monaldo Mastrolilli
  • Luis Paquete
  • Olivia Rossi-Doria
  • Tommaso Schiavinotto
Article

Abstract

This article analyzes the performance of metaheuristics on the vehicle routing problem with stochastic demands (VRPSD). The problem is known to have a computationally demanding objective function, which could turn to be infeasible when large instances are considered. Fast approximations of the objective function are therefore appealing because they would allow for an extended exploration of the search space. We explore the hybridization of the metaheuristic by means of two objective functions which are surrogate measures of the exact solution quality. Particularly helpful for some metaheuristics is the objective function derived from the traveling salesman problem (TSP), a closely related problem. In the light of this observation, we analyze possible extensions of the metaheuristics which take the hybridized solution approach VRPSD-TSP even further and report about experimental results on different types of instances. We show that, for the instances tested, two hybridized versions of iterated local search and evolutionary algorithm attain better solutions than state-of-the-art algorithms.

Mathematics Subject Classifications (2000)

68T20 90C27 90C59 90B06 90C15 

Key words

objective function approximation local search a priori tour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baeck, T., Fogel, D. and Michalewicz Z. (eds.): Evolutionary Computation 1: Basic Algorithms and Operators, Institute of Physics, Bristol, UK, 2000.MATHGoogle Scholar
  2. 2.
    Bertsimas, D. J.: A vehicle routing problem with stochastic demand, Oper. Res. 40(3) (1992), 574–585.MATHMathSciNetGoogle Scholar
  3. 3.
    Bertsimas, D. J., Chervi, P. and Peterson, M.: Computational approaches to stochastic vehicle routing problems, Trans. Sci. 29(4) (1995), 342–352.MATHGoogle Scholar
  4. 4.
    Bertsimas, D. J. and Simchi-Levi, D.: A new generation of vehicle routing research: Robust algorithms, addressing uncertainty, Oper. Res. 44(2) (1996), 216–304.Google Scholar
  5. 5.
    Bianchi, L., Birattari, M., Manfrin, M., Mastrolilli, M., Paquete, L., Rossi-Doria, O. and Schiavinotto, T.: Research on the vehicle routing problem with stochastic demand. Technical Report IDSIA-07-04, IDSIA, March 2004.Google Scholar
  6. 6.
    Birattari, M.: On the estimation of the expected performance of a metaheuristic on a class of instances. How many instances, how many runs? Technical Report TR/IRIDIA/2004-01.2, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium, 2004.Google Scholar
  7. 7.
    Birattari, M.: The Problem of Tuning Metaheuristics, as seen from a machine learning perspective, PhD thesis, Université Libre de Bruxelles, Brussels, Belgium, 2004.Google Scholar
  8. 8.
    Conover, W. J.: Practical Nonparametric Statistics, John Wiley & Sons, New York, New York, 1999.Google Scholar
  9. 9.
    Dean, A. and Voss, D.: Design and Analysis of Experiments, Springer, Berlin Heidelberg New York, 1999.MATHCrossRefGoogle Scholar
  10. 10.
    Dorigo, M. and Stützle, T.: Ant Colony Optimization, MIT, 2004.Google Scholar
  11. 11.
    Gendreau, M., Laporte, G. and Séguin, R.: An exact algorithm for the vehicle routing problem with stochastic demands and customers, Trans. Sci. 29(2) (1995), 143–155.MATHGoogle Scholar
  12. 12.
    Gendreau, M., Laporte, G. and Séguin, R.: Stochastic vehicle routing, Eur. J. Oper. Res. 88 (1996), 3–12.CrossRefMATHGoogle Scholar
  13. 13.
    Gendreau, M., Laporte, G. and Séguin, R.: A tabu search heuristic for the vehicle routing problem with stochastic demands and customers, Oper. Res. 44(3) (1996).Google Scholar
  14. 14.
    Glover, F.: Tabu search – Part I, ORSA J. Comput. 1(3) (1989), 190–206.MATHGoogle Scholar
  15. 15.
    Gutjahr, W.: S-ACO: An ant-based approach to combinatorial optimization under uncertainty, in Proceedings of ANTS 2004 – Ant Colony Optimization and Swarm Intelligence, volume 3172 of Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York, 2004, pp. 238–249.Google Scholar
  16. 16.
    Haimovitch, M. and Rinnooy Kan, A.: Bounds and heuristics for capacitated routing problems, Math. Oper. Res. 10 (1985), 527–542.MathSciNetGoogle Scholar
  17. 17.
    Jaillet, P.: Probabilistic Traveling Salesman Problems, PhD thesis, MIT, Cambridge, Massachusetts, 1985.Google Scholar
  18. 18.
    Jaillet, P.: A priori solution of a travelling salesman problem in which a random subset of the customers are visited, Oper. Res. 36(6) (1988), 929–936.MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Jaillet, P. and Odoni, A.: in B. L. Golden and A. A. Assad (eds.), Vehicle Routing: Methods and Studies, chapter The probabilistic vehicle routing problems, Elsevier, Amsterdam, The Netherlands, 1988.Google Scholar
  20. 20.
    Johnson, D. S. and McGeoch, L. A.: The travelling salesman problem: A case study in local optimization, in E. H. L. Aarts and J. K. Lenstra (eds.), Local Search in Combinatorial Optimization, Wiley, New York, USA, 1997, pp. 215–310.Google Scholar
  21. 21.
    Johnson, D. S. and McGeoch, L. A.: Experimental analysis of heuristics for the STSP, in G. Gutin and A. Punnen (eds.), The Traveling Salesman Problem and its Variations, Kluwer, Dordrecht, The Netherlands, 2002, pp. 369–443.Google Scholar
  22. 22.
    Kenyon, A. and Morton, D. P.: A survey on stochastic location and routing problems, Cent. Eur. J. Oper. Res. 9 (2002), 277–328.MathSciNetGoogle Scholar
  23. 23.
    Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P.: Optimization by simulated annealing, Science (4598) (1983), 671–680.Google Scholar
  24. 24.
    Laporte, G. and Louveaux, F.: The integer l-shaped method for stochastic integer programs with complete recourse, Oper. Res. Lett. 33 (1993), 133–142.CrossRefMathSciNetGoogle Scholar
  25. 25.
    Lourenço, H. R., Martin, O. and Stützle, T.: in F. Glover and G. Kochenberger (eds.), Handbook of Metaheuristics, volume 57 of International Series in Operations Research & Management, chapter Iterated Local Search, Kluwer, Boston, USA, 2002, pp. 321–353.Google Scholar
  26. 26.
    Or, I.: Traveling Salesman-Type Combinatorial Problems and their Relation to the Logistics of Blood Banking, PhD thesis, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL, 1976.Google Scholar
  27. 27.
    Secomandi, N.: Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands, Comput. Oper. Res. 27(5) (2000), 1171–1200.CrossRefGoogle Scholar
  28. 28.
    Secomandi, N.: A rollout policy for the vehicle routing problem with stochastic demands, Oper. Res. 49(5) (2001), 796–802.CrossRefMATHGoogle Scholar
  29. 29.
    Sheskin, D. J.: Handbook of Parametric and Nonparametric Statistical Procedures, 2nd edn., Chapman & Hall, 2000.Google Scholar
  30. 30.
    Stützle, T. and Hoos, H.: in P. Hansen and C. Ribeiro (eds.), Essays and Surveys on Metaheuristics, chapter Analyzing the Run-time Behaviour of Iterated Local Search for the TSP, Kluwer Academic, Boston, USA, 2002, pp. 589–612.Google Scholar
  31. 31.
    Teodorović, D. and Pavković, G.: A simulated annealing technique approach to the vehicle routing problem in the case of stochastic demand, Trans. Plan. Tech. 16 (1992), 261–273.CrossRefGoogle Scholar
  32. 32.
    Whitley, D., Starkweather, T. and Shaner, D.: The travelling salesman and sequence scheduling: Quality solutions using genetic edge recombination, in L. Davis (ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, USA, 1991, pp. 350–372.Google Scholar
  33. 33.
    Yang, W., Mathur, K. and Ballou, R. H.: Stochastic vehicle routing problem with restocking, Trans. Sci. 34(1) (2000), 99–112.CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Leonora Bianchi
    • 1
  • Mauro Birattari
    • 2
  • Marco Chiarandini
    • 3
  • Max Manfrin
    • 2
  • Monaldo Mastrolilli
    • 1
  • Luis Paquete
    • 3
  • Olivia Rossi-Doria
    • 4
  • Tommaso Schiavinotto
    • 3
  1. 1.IDSIALuganoSwitzerland
  2. 2.IRIDIAUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Intellectics GroupTU DarmstadtGermany
  4. 4.School of ComputingNapier UniversityScottlandUK

Personalised recommendations