Neighborhood Portfolio Approach for Local Search Applied to Timetabling Problems

Article

Abstract

A recent trend in local search concerns the exploitation of several different neighborhoods so as to increase the ability of the algorithm to navigate the search space. In this work we investigate a hybridization technique, that we call Neighborhood Portfolio Approach, that consists in the interleave of local search techniques based on various combinations of neighborhoods. In particular, we are able to select the most effective search technique through a systematic analysis of all meaningful combinations built upon a set of basic neighborhoods. The proposed approach is applied to two practical problems belonging to the timetabling family, and systematically tested and compared on real-world instances. The experimental analysis shows that our approach leads to automatic design of new algorithms that provide better results than basic local search techniques.

Mathematical Subject Classifications (2000)

90B40 Search theory 68W20 Randomized algorithms 68W40 Analysis of algorithms 90B35 Scheduling theory deterministic 

Key words

local search neighborhood tabu search timetabling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, E. and Lenstra, J. K. (eds.): Local Search in Combinatorial Optimization, Wiley, Chirchester, UK, 1997.MATHGoogle Scholar
  2. 2.
    Ahuja, R. K., Orin, J. B. and Sharma, D.: Very large scale neighborhood search, Int. Trans. Oper. Res. 7 (2000), 301–317.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Birattari, M., Stützle, T., Paquete, L. and Varrentrapp, K.: A racing algorithm for configuring metaheuristics, in W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke and N. Jonoska (eds.), GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, NY, USA, 2002, pp. 11–18.Google Scholar
  4. 4.
    Conover, W.: Practical Nonparametric Statistics, 3rd edn., John Wiley & Sons, New York, NY, USA, 1999.Google Scholar
  5. 5.
    Di Gaspero, L. and Schaerf, A.: \(\textsc{EasyLocal++}\): An object-oriented framework for flexible design of local search algorithms, Softw. Pract. Exp. 33(8) (2003), 733–765.CrossRefGoogle Scholar
  6. 6.
    Glover, F. and Laguna, M.: Tabu Search, Kluwer, Boston, MA, USA, 1997.MATHGoogle Scholar
  7. 7.
    Hansen, P. and Mladenović, N.: An introduction to variable neighbourhood search, in S. Voß, S. Martello, I. Osman and C. Roucairol (eds.), Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, Kluwer, Boston, MA, USA, 1999, pp. 433–458.Google Scholar
  8. 8.
    Hoos, H. H. and Stützle, T.: Stochastic Local Search Foundations and Applications, Morgan Kaufmann, San Francisco, CA, USA, 2005.MATHGoogle Scholar
  9. 9.
    Itai, A., Rodeh, M. and Tanimoto, S. L.: Some matching problems for bipartite graphs, Technical Report TR93, IBM Israel Scientific Center, Haifa, Israel, 1977.Google Scholar
  10. 10.
    Kirkpatrick, S., Gelatt, C. D. Jr. and Vecchi, M. P.: Optimization by simulated annealing, Science 220 1983, 671–680.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Lourenço, H. R., Martin, O. and Stützle, T.: Applying iterated local search to the permutation flow shop problem, in F. Glover and G. Kochenberger (eds.), Handbook of Metaheuristics, Kluwer, Boston, MA, USA, 2003.Google Scholar
  12. 12.
    Pesant, G. and Gendreau, M.: A constraint programming framework for local search methods, J Heuristics 5 (1999), 255–279.CrossRefMATHGoogle Scholar
  13. 13.
    Rossi-Doria, O. et al.: A comparison of the performance of different metaherustic on the timetabling problem, in E. Burke and P. D. Causmaecker (eds.), Proc. of the 4th Int. Conf. on the Practice and Theory of Automated Timetabling (PATAT-2002), Selected Papers, Vol. 2740 of Lecture Notes in Computer Science. Berlin-Heidelberg, Germany, 2003, pp. 329–351.Google Scholar
  14. 14.
    Schaerf, A.: Tabu search techniques for large high-school timetabling problems, in Proc. of the 13th Nat. Conf. on Artificial Intelligence (AAAI-96), Portland, OR, USA, 1996, pp. 363–368.Google Scholar
  15. 15.
    Schaerf, A.: A survey of automated timetabling, Artif. Intell. Rev. 13(2) (1999), 87–127.CrossRefGoogle Scholar
  16. 16.
    Selman, B., Kautz, H. A. and Cohen, B.: Noise strategies for improving local search, in Proc. of the 12th Nat. Conf. on Artificial Intelligence (AAAI-94). Seattle, WA, USA, 1994, pp. 337–343.Google Scholar
  17. 17.
    Stützle, T.: Iterated local search for the quadratic assignment problem, Technical Report AIDA-99-03, FG Intellektik, TU Darmstadt, 1998.Google Scholar
  18. 18.
    Vaessens, R., Aarts, E. and Lenstra, J. K.: Job shop scheduling by local search, INFORMS J. Comput. 8(3) 1996, 302–317.MATHCrossRefGoogle Scholar
  19. 19.
    Voß, S., Martello, S., Osman, I. and Roucairol, C. (eds.): Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, Kluwer, Boston, MA, USA, 1999.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria ElettricaGestionale e Meccanica – Università di UdineUdineItaly

Personalised recommendations