Advertisement

A Decomposition Method for Transfer Line Life Cycle Cost Optimisation

  • Alexandre DolguiEmail author
  • Nikolai Guschinsky
  • Genrikh Levin
Article

Abstract

A new method to search best parameters of a transfer line so that the cost of each manufactured part will be minimised. The synchronised transfer lines with parallel machining are considered. Such lines are widely used in mass and large-scale mechanical production. The objective is to minimise the line life cycle cost per part under the given productivity and technological constraints. The design decisions to be optimised are: number of spindles and workstations. This will be accomplished by defining subsets of tasks which are performed by one spindle head and cutting conditions for each spindle. The paper focuses on a mathematical model of the problem and methods used to solve it. This model is formulated in terms of mixed (discrete and non-linear) programming and graph theory. A special decomposition scheme based on the parametric decomposition technique is proposed. For solving the sub-problems obtained after decomposition, a Branch-and-Bound algorithm as well as a shortest path technique are used.

Key words

machining lines line design and balancing optimization decomposition approach shortest path 

Mathematics Subject Classification (2000)

90C27 90B30 90B80 

References

  1. 1.
    Amen, M.: An exact method for cost-oriented assembly line balancing, Int. J. Prod. Econ. 64 (2000), 187–195.CrossRefGoogle Scholar
  2. 2.
    Amen, M.: Heuristic methods for cost-oriented assembly line balancing: A survey, Int. J. Prod. Econ. 68 (2000), 1–14.CrossRefGoogle Scholar
  3. 3.
    Amen, M.: Heuristic methods for cost-oriented assembly line balancing: A comparison on solution quality and computing time, Int. J. Prod. Econ. 69 (2001), 255–264.CrossRefGoogle Scholar
  4. 4.
    Arcus, A. L.: COMSOAL: A computer method of sequencing operations for assembly lines, Int. J. Prod. Res. 4 (1966), 259–277.CrossRefGoogle Scholar
  5. 5.
    Baybars, I.: A survey of exact algorithms for the simple line balancing problem, Manag. Sci. 32 (1986), 909–932.zbMATHMathSciNetGoogle Scholar
  6. 6.
    Bukchin, J., and Rubinovitz, J.: A weighted approach for the assembly line design with station paralleling and equipment selection. IIE Transactions 35 (2003), 73–85.CrossRefGoogle Scholar
  7. 7.
    Bukchin, J., and Tzur, M.: Design of flexible assembly line to minimize equipment cost. IIE Transactions 32 (2000), 585–598.CrossRefGoogle Scholar
  8. 8.
    Dolgui, A., Guschinsky, N. N. and Levin, G. M.: Optimal design of transfer lines and multi-position machines, in Proceedings of the 7th IEEE Mediterranean Conference on Control and Automation (MED′99), Haifa, Israel, 1999, pp. 1962–1973.Google Scholar
  9. 9.
    Dolgui, A., Guschinsky, N. N. and Levin, G. M.: On problem of optimal design of transfer lines with parallel and sequential operations, in Proceedings of the 1999 IEEE International Conference on Emerging Technologies and Factory Automation (ETFA’99), Barcelona, Catalonia, Spain, 1999, pp. 329–334.Google Scholar
  10. 10.
    Dolgui, A., Finel, B., Guschinsky, N., Levin, G. and Vernadat, F.: Load balancing for transfer lines: new algorithms and some comparisons, Proceedings of the International Conference on Production System Design, Supply Chain Management and Logistics, Szczecin, Poland, Informa, 2002, pp. 13–21.Google Scholar
  11. 11.
    Dolgui, A., Guschinsky, N. N., Levin, G. M. and Harrath, Y.: Un modele de programmation linaire pour l′equilibrage des charges des lignes de transfert. European Journal of Automated Systems 36(1) (2002), 11–31.Google Scholar
  12. 12.
    Graves, S. C. and Holmes, R. C.: Equipment selection and task assignment for multiproduct assembly system design, Int. J. Flex. Manuf. Syst. 1 (1988), 31–50.CrossRefGoogle Scholar
  13. 13.
    Graves, S. C. and Lamar, B. W.: An integer programming procedure for assembly design problems, Oper. Res. 31(3) (1983), 522–545.zbMATHGoogle Scholar
  14. 14.
    Guschinsky, N. N., Levin, G. M. and Tanaev, V. S.: Parametric decomposition of problems to minimise complex functions over a set of parameterised paths in digraphs, Izvestija AN SSSR. Techn. kibern. 6 (1990), 125–136 (in Russian).Google Scholar
  15. 15.
    Hitomi, K.: Manufacturing System Engineering, Taylor & Francis, 1996.Google Scholar
  16. 16.
    Johnson, J. R.: Optimally balancing large assembly lines with FABLE, Manag. Sci. 34 (1988), 240–253.CrossRefGoogle Scholar
  17. 17.
    Levin, G. M. and Tanaev, V. S.: Decomposition methods for optimization of design decisions, Nauka i Technika, Minsk (1978) (in Russian).Google Scholar
  18. 18.
    Pinto, P. A., Dannenbrin, D. G. and Khumawala, B. M.: Assembly line balancing with processing alternatives: An application, Manag. Sci. 29 (1983), 817–830.Google Scholar
  19. 19.
    Rekiek, B., Dolgui A., Dechambre, A. and Bratcu, A.: State of art of assembly lines design optimization, Ann. Rev. Control 26(2) (2002), 163–174.CrossRefGoogle Scholar
  20. 20.
    Rosenberg, O. and Ziegler, H.: A comparison of heuristic algorithms for cost-oriented assembly line balancing, Z. Oper-Res. 36 (1992), 477–495.zbMATHGoogle Scholar
  21. 21.
    School, A.: Balancing and Sequencing of Assembly Lines, Physica-Varlag, Heidelberg, 1999.Google Scholar
  22. 22.
    Talbot, F. B., Paterson, J. H. and Gehrlein, W. V.: A comparative evaluation of heuristic line balancing techniques, Manag. Sci. 32 (1986), 430–454.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Alexandre Dolgui
    • 1
    Email author
  • Nikolai Guschinsky
    • 2
  • Genrikh Levin
    • 2
  1. 1.Division for Industrial Engineering and Computer ScienceEcole des Mines de Saint EtienneSaint Etienne cedex 2France
  2. 2.Operations Research Laboratory, United Institute of Informatics ProblemsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations