Squeezing the DCT to Fight Camouflage

  • Marcos Escudero-ViñoloEmail author
  • Jesus Bescos


This paper presents a novel descriptor based on the two-dimensional discrete cosine transform (2D DCT) to fight camouflage. The 2D DCT gained popularity in image and video analysis owing to its wide use in signal compression. The 2D DCT is a well-established example to evaluate new techniques in sparse representation and is widely used for block and texture description, mainly due to its simplicity and its ability to condense information in a few coefficients. A common approach, for different applications, is to select a subset of these coefficients, which is fixed for every analyzed signal. In this paper, we question this approach and propose a novel method to select a signal-dependent subset of relevant coefficients, which is the basis for the proposed R-DCT and sR-DCT descriptors. As we propose to describe each pixel with a different set of coefficients, each associated to a particular basis function, in order to compare any two so-obtained descriptors a distance function is required: we propose a novel metric to cope with this situation. The presented experiments over the change detection dataset show that the proposed descriptors notably reduce the likelihood of camouflage respect to other popular descriptors: 92% respect to the pixel luminance, 82% respect to the RGB values, and 65% respect to the best performing LBP configuration.


Discrete cosine transform Camouflage Sparse representations 



  1. 1.
    Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 23(1), 90–93 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ajmera, P.K., Jadhav, D.V., Holambe, R.S.: Text-independent speaker identification using radon and discrete cosine transforms based features from speech spectrogram. Pattern Recognit. 44, 2749–2759 (2011)CrossRefGoogle Scholar
  3. 3.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)CrossRefGoogle Scholar
  4. 4.
    Babu, R., Ramakrishnan, K., Srinivasan, S.: Video object segmentation: a compressed domain approach. IEEE Trans. Circuits Syst. Video Technol. 14(4), 462–474 (2004)CrossRefGoogle Scholar
  5. 5.
    Barnich, O., Van Droogenbroeck, M.: Vibe: a universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 20(6), 1709–1724 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Benedek, C., Sziranyi, T.: Study on color space selection for detecting cast shadows in video surveillance. Int. J. Imaging Syst. Technol. 17, 190–201 (2007)CrossRefGoogle Scholar
  7. 7.
    Bescos, J.: Real-time shot change detection over online mpeg-2 video. IEEE Trans. Circuits Syst. Video Technol. 14(4), 475–484 (2004)CrossRefGoogle Scholar
  8. 8.
    Bhaskar, H., Mihaylova, L., Achim, A.: Video foreground detection based on symmetric alpha-stable mixture models. IEEE Trans. Circuits Syst. Video Technol. 20(8), 1133–1138 (2010)CrossRefGoogle Scholar
  9. 9.
    Bouwmans, T.: Traditional and recent approaches in background modeling for foreground detection: an overview. Comput. Sci. Rev. 11, 31–66 (2014)zbMATHCrossRefGoogle Scholar
  10. 10.
    Dalal, N., Triggs, B.: A benchmarking framework for background subtraction in RGBD videos. In: International Conference on Image Analysis and Processing, vol. 1, pp. 219–229. Springer (2017)Google Scholar
  11. 11.
    Chen, H., Reiss, P.T., Tarpey, T.: Optimally weighted \(L^{2}\) distance for functional data. Biometrics 70(3), 516–525 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Cheng, H., Liu, Z., Yang, L., Chen, X.: Sparse representation and learning in visual recognition: theory and applications. Signal Process. 93(6), 1408–1425 (2013). Special issue on machine learning in intelligent image processingCrossRefGoogle Scholar
  13. 13.
    Conte, D., Foggia, P., Percannella, G., Tufano, F., Vento, M.: An algorithm for recovering camouflage errors on moving people. In: Bai, X., Hancock, E.R., Ho, T.K., Wilson, R.C., Biggio, B., Robles-Kelly, A. (eds.) Structural, Syntactic, and Statistical Pattern Recognition, pp. 365–374. Springer, Berlin, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893 (2005)Google Scholar
  15. 15.
    Dorudian, N., Lauria, S., Swift, S.: Moving object detection using adaptive blind update and RGB-D camera. IEEE Sens. J. 19(18), 8191–8201 (2019)CrossRefGoogle Scholar
  16. 16.
    Drimbarean, A., Whelan, P.F.: Experiments in colour texture analysis. Pattern Recognit. Lett. 22(10), 1161–1167 (2001)zbMATHCrossRefGoogle Scholar
  17. 17.
    Elad, M.: Sparse modeling in image processing and deep learning (Keynote Talk). IEEE SigPort (2017). Accessed 20 Nov 2019
  18. 18.
    Elad, M., Figueiredo, M.A.T., Ma, Y.: On the role of sparse and redundant representations in image processing. Proc. IEEE 98(6), 972–982 (2010)CrossRefGoogle Scholar
  19. 19.
    Escudero, M., Tiburzi, F., Bescos, J.: Mpeg video object segmentation under camera motion and multimodal backgrounds. In: 2008 15th IEEE International Conference on Image Processing, ICIP, pp. 2668–2671 (2008)Google Scholar
  20. 20.
    Felzenszwalb, P. F., Girshick, R. B., McAllester, D.: Cascade object detection with deformable part models. In: 2010 IEEE conference on Computer vision and pattern recognition (CVPR), pp. 2241–2248 (2010)Google Scholar
  21. 21.
    Fu, J., Lee, S., Wong, S., Yeh, J., Wang, A., Wu, H.: Image segmentation feature selection and pattern classification for mammographic microcalcifications. Comput. Med. Imaging Gr. 29(6), 419–429 (2005)CrossRefGoogle Scholar
  22. 22.
    Gao, Y., Ma, J., Yuille, A.L.: Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples. IEEE Trans. Image Process. 26(5), 2545–2560 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Graps, A.: An introduction to wavelets. IEEE Comput. Sci. Eng. 2(2), 50–61 (1995)CrossRefGoogle Scholar
  24. 24.
    De Gregorio, M., Giordano, M.: CwisarDH\(^+\): background detection in RGBD videos by learning of weightless neural networks. In: International Conference on Image Analysis and Processing, pp. 1242–253. Springer (2017)Google Scholar
  25. 25.
    Guleryuz, O.G.: Weighted averaging for denoising with overcomplete dictionaries. IEEE Trans. Image Process. 16(12), 3020–3034 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Heikkilä, M., Pietikäinen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006)CrossRefGoogle Scholar
  27. 27.
    Hernández, E., Weiss, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)zbMATHCrossRefGoogle Scholar
  28. 28.
    Hong, X., Zhao, G., Pietikäinen, M., Chen, X.: Combining LBP difference and feature correlation for texture description. IEEE Trans. Image Process. 23(6), 2557–2568 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Hu, W., Yang, Y., Zhang, W., Xie, Y.: Moving object detection using tensor-based low-rank and saliently fused-sparse decomposition. IEEE Trans. Image Process. 26(2), 724–737 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Ivanov, Y., Bobick, A., Liu, J.: Fast lighting independent background subtraction. Int. J. Comput. Vis. 37(2), 199–207 (2000)zbMATHCrossRefGoogle Scholar
  31. 31.
    Javed, S., Bouwmans, T., Sultana, M., Jung, S.K.: Moving object detection on RGB-D videos using graph regularized spatiotemporal RPCA. In: International Conference on Image Analysis and Processing, pp. 1230–1241. Springer (2017)Google Scholar
  32. 32.
    Ji, S., Park, H.W.: Moving object segmentation in DCT-based compressed video. Electron. Lett. 36(21), 1769–1770 (2000)CrossRefGoogle Scholar
  33. 33.
    Kim, S., Paeng, K., Seo, J.W., Kim, S.D.: Bi-DCT: DCT-based local binary descriptor for dense stereo matching. IEEE Signal Process. Lett. 22(7), 847–851 (2015)CrossRefGoogle Scholar
  34. 34.
    Le Gall, D.: MPEG: a video compression standard for multimedia applications. Commun. ACM 34(4), 46–58 (1991)CrossRefGoogle Scholar
  35. 35.
    Li, B., Yuan, C., Xiong, W., Hu, W., Peng, H., Ding, X., Maybank, S.: Multi-view multi-instance learning based on joint sparse representation and multi-view dictionary learning. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2554–2560 (2017)CrossRefGoogle Scholar
  36. 36.
    Li, L., Huang, W., Gu, I.Y.-H., Tian, Q.: Statistical modeling of complex backgrounds for foreground object detection. IEEE Trans. Image Process. 13(11), 1459–1472 (2004)CrossRefGoogle Scholar
  37. 37.
    Li, S., Florencio, D., Li, W., Zhao, Y., Cook, C.: A fusion framework for camouflaged moving foreground detection in the wavelet domain. ArXiv e-prints (2018)Google Scholar
  38. 38.
    Li, Z., Jiang, P., Ma, H., Yang, J., Tang, D.: A model for dynamic object segmentation with kernel density estimation based on gradient features. Image Vis Comput 27(6), 817–823 (2009)CrossRefGoogle Scholar
  39. 39.
    Lienhart, R. W.: Comparison of automatic shot boundary detection algorithms. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 3656, pp. 290–301 (1998)Google Scholar
  40. 40.
    Liu, Z., Huang, K., Tan, T.: Foreground object detection using top-down information based on EM framework. IEEE Trans. Image Process. 21(9), 4204–4217 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  42. 42.
    Maddalena, L., Petrosino, A.: Exploiting color and depth for background subtraction. In: International Conference on Image Analysis and Processing, vol. 1, pp. 254–265. Springer (2017)Google Scholar
  43. 43.
    Maddalena, L., Petrosino, A.: The SOBS algorithm: what are the limits? In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 1, pp. 21–26. IEEE (2012)Google Scholar
  44. 44.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 2001 Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 416–423 (2001)Google Scholar
  45. 45.
    Mendez-Vazquez, H., Garcia-Reyes, E., Condes-Molleda, Y.: A new combination of local appearance based methods for face recognition under varying lighting conditions. In: Proceedings of the 13th Iberoamerican congress on Pattern Recognition: Progress in Pattern Recognition, Image Analysis and Applications, pp. 535–542. Springer (2008)Google Scholar
  46. 46.
    Mezaris, V., Kompatsiaris, I., Boulgouris, N., Strintzis, M.: Real-time compressed-domain spatiotemporal segmentation and ontologies for video indexing and retrieval. IEEE Trans. Circuits Syst. Video Technol. 14(5), 606–621 (2004)CrossRefGoogle Scholar
  47. 47.
    Minematsu, T., Shimada, A., Uchiyama, H., Taniguchi, R.: Simple combination of appearance and depth for foreground segmentation. In: International Conference on Image Analysis and Processing, vol. 1, pp. 266–277. Springer (2017)Google Scholar
  48. 48.
    Nanni, L., Lumini, A.: Coding of amino acids by texture descriptors. Artif. Intell. Med. 48(1), 43–50 (2010)CrossRefGoogle Scholar
  49. 49.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)zbMATHCrossRefGoogle Scholar
  50. 50.
    Paclik, P., Duin, R., van Kempen, G., Kohlus, R.: Supervised segmentation of textures in backscatter images. In: Proceedings of 2002 16th International Conference on Pattern Recognition, vol. 2, pp. 490–493 (2002)Google Scholar
  51. 51.
    Porikli, F., Bashir, F., Sun, H.: Compressed domain video object segmentation. IEEE Trans. Circuits Syst. Video Technol. 20(1), 2–14 (2010)CrossRefGoogle Scholar
  52. 52.
    Qian, X., Hua, X.-S., Chen, P., Ke, L.: PLBP: an effective local binary patterns texture descriptor with pyramid representation. Pattern Recognit. 44, 2502–2515 (2011)CrossRefGoogle Scholar
  53. 53.
    Ramsay, J.O.: Functional Data Analysis. Wiley, New York (2004)Google Scholar
  54. 54.
    Randen, T., Husoy, J.: Filtering for texture classification: a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291–310 (1999)CrossRefGoogle Scholar
  55. 55.
    Rao, K.R., Yip, P.: Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic press, Cambridge (2014)zbMATHGoogle Scholar
  56. 56.
    Reddy, V., Sanderson, C., Lovell, B. C.: Robust foreground object segmentation via adaptive region-based background modelling. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 3939–3942 (2010)Google Scholar
  57. 57.
    Reddy, V., Sanderson, C., Lovell, B.C.: A low-complexity algorithm for static background estimation from cluttered image sequences in surveillance contexts. J. Image Video Process. 2011, 1 (2011)CrossRefGoogle Scholar
  58. 58.
    Satopaa, V., Albrecht, J., Irwin, D., Raghavan, B.: Finding a “kneedle” in a haystack: detecting knee points in system behavior. In: 2011 31st International Conference on Distributed Computing Systems Workshops, pp. 166–171 (2011)Google Scholar
  59. 59.
    St-Charles, P.-L., Bilodeau, G.-A., Bergevin, R.: Subsense: a universal change detection method with local adaptive sensitivity. IEEE Trans. Image Process. 24(1), 359–373 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Starck, J.-L., Murtagh, F., Fadili, J.M.: Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity. Cambridge University Press, Cambridge (2010)zbMATHCrossRefGoogle Scholar
  61. 61.
    Ahonen, T., Matas, J., He, C., Pietikäinen. M.: Rotation invariant image description with local binary pattern histogram Fourier features. In: Proceedings of Image Analysis, SCIA: Lecture Notes in Computer Science, vol. 5575, pp. 61–70 (2009)CrossRefGoogle Scholar
  62. 62.
    Tomita, F., Tsuji, S.: Computer Analysis of Visual Textures, vol. 102. Springer, Berlin (2013)zbMATHGoogle Scholar
  63. 63.
    Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol. 1, pp. 255–261. IEEE (1999)Google Scholar
  64. 64.
    Tsai, D.-M., Chiu, W.-Y.: Motion detection using Fourier image reconstruction. Pattern Recognit. Lett. 29(16), 2145–2155 (2008)CrossRefGoogle Scholar
  65. 65.
    Varcheie, P., Sills-Lavoie, M., Bilodeau, G.-A.: An efficient region-based background subtraction technique. In: 2008 Canadian Conference on Computer and Robot Vision, CRV ’08, pp. 71 –78 (2008)Google Scholar
  66. 66.
    Wang, H., Divakaran, A., Vetro, A., Chang, S.-F., Sun, H.: Survey of compressed-domain features used in audio-visual indexing and analysis. J. Vis. Commun. Image Represent. 14(2), 150–183 (2003)CrossRefGoogle Scholar
  67. 67.
    Wang, R., Bunyak, F., Seetharaman, G., Palaniappan, K.: Static and moving object detection using flux tensor with split gaussian models. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 420–424 (2014)Google Scholar
  68. 68.
    Wang, Y., Jodoin, P.-M., Porikli, F., Konrad, J., Benezeth, Y., Ishwar, P.: CDnet 2014: an expanded change detection benchmark data-set. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 393–400. IEEE (2014)Google Scholar
  69. 69.
    Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)CrossRefGoogle Scholar
  70. 70.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  71. 71.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)CrossRefGoogle Scholar
  72. 72.
    Xu, Y., Huang, S., Ji, H., Fermüller, C.: Scale-space texture description on SIFT-like textons. Comput. Vis. Image Underst. 116(9), 999–1013 (2012)CrossRefGoogle Scholar
  73. 73.
    Zamir, A.R., Sax, A., Shen, W., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, pp. 13712-3722. IEEE (2018)Google Scholar
  74. 74.
    Zeng, D., Zhu, M.: Background subtraction using multiscale fully convolutional network. IEEE Access 6, 16010–16021 (2018)CrossRefGoogle Scholar
  75. 75.
    Zha, Y., Bi, D., Yang, Y.: Learning complex background by multi-scale discriminative model. Pattern Recognit. Lett. 30, 1003–1014 (2009)CrossRefGoogle Scholar
  76. 76.
    Zhang, H., Xu, D.: Fusing color and texture features for background model. In: Fuzzy Systems and Knowledge Discovery: Third International Conference, FSKD 2006, Xian, China, September 24–28, 2006. Proceedings, pp. 887–893. Springer (2006)CrossRefGoogle Scholar
  77. 77.
    Zhang, X., Zhu, C., Wang, S., Liu, Y., Ye, M.: A Bayesian approach to camouflaged moving object detection. IEEE Trans. Circuits Syst. Video Technol. 27(9), 2001–2013 (2017)CrossRefGoogle Scholar
  78. 78.
    Zhang, Z., Xu, Y., Yang, J., Li, X., Zhang, D.: A survey of sparse representation: algorithms and applications. IEEE Access 3, 490–530 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Video Processing and Understanding Lab, Escuela Politécnica SuperiorUniversidad Autónoma de MadridMadridSpain

Personalised recommendations