Journal of Mathematical Imaging and Vision

, Volume 61, Issue 9, pp 1342–1369 | Cite as

Using Geometric Interval Algebra Modeling for Improved Three-Dimensional Camera Calibration

  • Darlan N. BritoEmail author
  • Flávio L. C. Pádua
  • Aldo P. C. Lopes


This paper addresses the problem of estimating camera calibration parameters by using a novel method based on interval algebra. Unlike existing solutions, which usually apply real algebra, our method is capable of obtaining highly accurate parameters even in scenarios where the input data for camera calibration are severely corrupted by noise or no artificial calibration target can be introduced on the scene. We introduce some key concepts regarding the usage of interval algebra on projective space, which might be used by other computer vision methods. To demonstrate the robustness and effectiveness of our method, we present results for camera calibration with varying levels of noise on the input data of a world coordinate frame (standard deviation of up to 0.5 m) and their corresponding projections onto an image plane (standard deviation of up to 10 pixels), which are significantly larger than noise levels considered by state-of-the-art methods.


Interval algebra Image geometry Camera calibration Projective geometry 



The authors would like to thank the support of CNPq under Procs. 307510/2017-4 and 313163/2014-6, FAPEMIG under Proc. PPM-00542-15, CEFET-MG and CAPES.


  1. 1.
    Ahmed, M.T., Hemayed, E.E., Farag, A.A.: Neurocalibration: a neural network that can tell camera calibration parameters. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, Vol. 1, pp. 463–468. IEEE (1999)Google Scholar
  2. 2.
    Ahneman, D.T., Estrada, J.G., Lin, S., Dreher, S.D., Doyle, A.G.: Predicting reaction performance in c-n cross-coupling using machine learning. Science 360(6385), 186–190 (2018)CrossRefGoogle Scholar
  3. 3.
    Alemán-Flores, M., Alvarez, L., Gomez, L., Henriquez, P., Mazorra, L.: Camera calibration in sport event scenarios. Pattern Recognit. 47(1), 89–95 (2014)CrossRefGoogle Scholar
  4. 4.
    Bennett, S., Lasenby, J., Kokaram, A., Inguva, S., Birkbeck, N.: Reconstruction of the pose of uncalibrated cameras via user-generated videos. In: Proceedings of the International Conference on Distributed Smart Cameras, ICDSC ’14, pp. 3:1–3:8. ACM, New York, NY, USA (2014)Google Scholar
  5. 5.
    Brückner, M., Bajramovic, F., Denzler, J.: Intrinsic and extrinsic active self-calibration of multi-camera systems. Mach. Vis. Appl. 25(2), 389–403 (2013)CrossRefGoogle Scholar
  6. 6.
    Da, F., Li, Q., Zhang, H., Fang, X.: Self-calibration using two same circles. Opt. Laser Technol. 44(6), 1924–1933 (2012)CrossRefGoogle Scholar
  7. 7.
    Datta, A., Kim, J.S., Kanade, T.: Accurate camera calibration using iterative refinement of control points. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1201–1208. IEEE (2009)Google Scholar
  8. 8.
    Delage, E., Lee, H., Ng, A.Y.: A dynamic Bayesian network model for autonomous 3d reconstruction from a single indoor image. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), Vol. 2, pp. 2418–2428 (2006)Google Scholar
  9. 9.
    Fabbri, R., Kimia, B.B.: Multiview differential geometry of curves. Int. J. Comput. Vis. 120(3), 324–346 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Faugeras, O., Luong, Q.T., Papadopoulou, T.: The Geometry of Multiple Images: The Laws that Govern the Formation of Images of a Scene and Some of Their Applications. MIT Press, Cambridge (2001)CrossRefGoogle Scholar
  11. 11.
    Faugeras, O.D., Luong, Q.T., Maybank, S.J.: Camera self-calibration: theory and experiments. In: Sandini, G. (ed.) Computer Vision—ECCV 92. Lecture Notes in Computer Science, vol. 588, pp. 321–334. Springer, Berlin (1992)CrossRefGoogle Scholar
  12. 12.
    Furukawa, Y., Ponce, J.: Accurate camera calibration from multi-view stereo and bundle adjustment. Int. J. Comput. Vis. 84(3), 257–268 (2009)CrossRefGoogle Scholar
  13. 13.
    Fusiello, A., Benedetti, A., Farenzena, M., Busti, A.: Globally convergent autocalibration using interval analysis. IEEE Trans. Pattern Anal. Mach. Intell. 26(12), 1633–1638 (2004)CrossRefGoogle Scholar
  14. 14.
    Gee, T., Delmas, P., Stones-Havas, N., Sinclair, C., Mark, W.V.D., Li, W., Friedrich, H., Gimel’farb, G.: Tsai camera calibration enhanced. In: 2015 14th IAPR International Conference on Machine Vision Applications (MVA), pp. 435–438 (2015)Google Scholar
  15. 15.
    Geng, L.C., Li, S.Z., Su, S.Z., Cao, D.L., Lei, Y.Q., Ji, R.R.: A new camera self-calibration method based on csa. Visual Commun. Image Process. (VCIP) 2013, 1–6 (2013)Google Scholar
  16. 16.
    Gómez, M.J., García, F., Martín, D., de la Escalera, A., Armingol, J.M.: Intelligent surveillance of indoor environments based on computer vision and 3D point cloud fusion. Expert Syst. Appl. 42(21), 8156–8171 (2015)CrossRefGoogle Scholar
  17. 17.
    Grammatikopoulos, L., Karras, G., Petsa, E.: Camera calibration approaches using single images of man-made objects. In: Proceedings of the XIX CIPA International Symposium, p. 328 (2003)Google Scholar
  18. 18.
    Grammatikopoulos, L., Karras, G., Petsa, E.: An automatic approach for camera calibration from vanishing points. ISPRS J. Photogram. Remote Sens. 62(1), 64–76 (2007)CrossRefGoogle Scholar
  19. 19.
    Hammarstedt, P., Sturm, P., Heyden, A.: Degenerate cases and closed-form solutions for camera calibration with one-dimensional objects. In: Tenth IEEE International Conference on Computer Vision (ICCV’05) Vol. 1, Vol. 1, pp. 317–324 Vol. 1 (2005)Google Scholar
  20. 20.
    Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis (2004)Google Scholar
  21. 21.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, Vol. 2. Cambridge University Press (2000).
  22. 22.
    Heikkila, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 1106–1112 (1997)Google Scholar
  23. 23.
    Horáček, J., Hladík, M.: Computing enclosures of overdetermined interval linear systems. arXiv preprint. arXiv:1304.4738 (2013)
  24. 24.
    Houssineau, J., Clark, D.E., Ivekovic, S., Lee, C.S., Franco, J.: A unified approach for multi-object triangulation, tracking and camera calibration. IEEE Trans. Signal Process. 64(11), 2934–2948 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)Google Scholar
  26. 26.
    Ismail, K., Sayed, T., Saunier, N.: A methodology for precise camera calibration for data collection applications in urban traffic scenes. Can. J. Civ. Eng. 40(1), 57–67 (2013)CrossRefGoogle Scholar
  27. 27.
    Juan, L., Gwun, O.: Surf applied in panorama image stitching. In: 2010 2nd International Conference on Image Processing Theory Tools and Applications (IPTA), pp. 495–499. IEEE (2010).
  28. 28.
    Kim, P.: Rigid Body Dynamics for Beginners: Euler Angles and Quaternions. CreateSpace Independent Publishing Platform (2013)Google Scholar
  29. 29.
    Kumar, S., Raman, B., Wu, J.: Neuro-calibration of a camera using particle swarm optimization. In: 2009 2nd International Conference on Emerging Trends in Engineering and Technology (ICETET), pp. 273–278. IEEE (2009)Google Scholar
  30. 30.
    Lee, H., Shechtman, E., Wang, J., Lee, S.: Automatic upright adjustment of photographs with robust camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 833–844 (2014)CrossRefGoogle Scholar
  31. 31.
    Lee, S.C., Nevatia, R.: Robust camera calibration tool for video surveillance camera in urban environment. In: CVPR 2011 WORKSHOPS, pp. 62–67. IEEE (2011)Google Scholar
  32. 32.
    Li, B., Peng, K., Ying, X., Zha, H.: Simultaneous Vanishing Point Detection and Camera Calibration from Single Images, pp. 151–160. Springer, Berlin (2010)Google Scholar
  33. 33.
    Li, D., Tian, J.: An accurate calibration method for a camera with telecentric lenses. Opt. Lasers Eng. 51(5), 538–541 (2013)CrossRefGoogle Scholar
  34. 34.
    Li, W., Zhu, G., Lin, B.: Automatically-controlled system for detecting quartz crystal based on plc. In: Jin, D., Lin, S. (eds.) Advances in Computer Science and Information Engineering, Advances in Intelligent and Soft Computing, vol. 169, pp. 619–624. Springer, Berlin (2012)CrossRefGoogle Scholar
  35. 35.
    Liu, G., Mao, Z.: Structural damage diagnosis with uncertainties quantified using interval analysis. Struct. Control Health Monit. 24(10), e1989 (2017)CrossRefGoogle Scholar
  36. 36.
    Liu, Y., Zhang, X., Huang, T.: Determining 3d structure and motion of man-made objects from image corners. In: Proceedings of the Fifth IEEE Southwest Symposium on Image Analysis and Interpretation, 2002, pp. 26–30 (2002)Google Scholar
  37. 37.
    Loaiza, M.E., Raposo, A.B., Gattass, M.: Multi-camera calibration based on an invariant pattern. Comput. Graph. 35(2), 198–207 (2011)CrossRefGoogle Scholar
  38. 38.
    Lourakis, M.I., Deriche, R.: Camera self-calibration using the singular value decomposition of the fundamental matrix: from point correspondences to 3d measurements. Tech. rep., INRIA (1999)Google Scholar
  39. 39.
    Luhmann, T., Fraser, C., Maas, H.G.: Sensor modelling and camera calibration for close-range photogrammetry. ISPRS J. Photogramm. Remote Sens. 115, 37–46, theme issue ’State-of-the-art in photogrammetry, remote sensing and spatial information science’ (2016)CrossRefGoogle Scholar
  40. 40.
    Matthew, W.: Galib: a c++ library of genetic algorithm components. (2016)
  41. 41.
    Maybank, S.S., Faugeras, O.O.: A theory of self-calibration of a moving camera. Int. J. Comput. Vis. 151(1992), 123–151 (1992)CrossRefGoogle Scholar
  42. 42.
    Medioni, G., Kang, S.B.: Emerging Topics in Computer Vision. Prentice Hall PTR, Upper Saddle River (2004)Google Scholar
  43. 43.
    Merras, M., Saaidi, A., Nazih, A.G., Satori, K., et al.: A new method of camera self-calibration with varying intrinsic parameters using an improved genetic algorithm. In: 2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA), pp. 1–8. IEEE (2013)Google Scholar
  44. 44.
    Mirzaei, F.M., Roumeliotis, S.I.: A kalman filter-based algorithm for imu-camera calibration: observability analysis and performance evaluation. IEEE Trans. Rob. 24(5), 1143–1156 (2008)CrossRefGoogle Scholar
  45. 45.
    Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Englewood Cliffs (1966)zbMATHGoogle Scholar
  46. 46.
    Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis (2009)Google Scholar
  47. 47.
    Moses, O.J.: Imageai, an open source python library built to empower developers to build applications and systems with self-contained computer vision capabilities. (2018–)
  48. 48.
    Moulard, T., Alcantarilla, P., Lamiraux, F.: Reliable Indoor Navigation on Humanoid Robots Using Vision-Based Localization. Tech. rep (2012)Google Scholar
  49. 49.
    Mudrova, L., Hawes, N.: Task scheduling for mobile robots using interval algebra. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 383–388 (2015)Google Scholar
  50. 50.
    Park, S.W., Seo, Y., Hong, K.S.: Real-time camera calibration for virtual studio. Real-Time Imaging 6(6), 433–448 (2000)CrossRefGoogle Scholar
  51. 51.
    Qi, F., Li, Q., Luo, Y., Hu, D.: Camera calibration with one-dimensional objects moving under gravity. Pattern Recognit. 40(1), 343–345 (2007)CrossRefGoogle Scholar
  52. 52.
    Rohn, J.: Enclosing solutions of overdetermined systems of linear interval equations. Reliable Comput. 2(2), 167–171 (1996)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Rohn, J., Farhadsefat, R.: Inverse interval matrix: a survey. Electron. J. Linear Algebra 22(1), 46 (2011)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Rota, G.: Interval Methods for Systems of Equations (1990)Google Scholar
  55. 55.
    Schindler, G., Dellaert, F.: Atlanta world: an expectation maximization framework for simultaneous low-level edge grouping and camera calibration in complex man-made environments. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., Vol. 1, pp. I–203–I–209 Vol. 1 (2004)Google Scholar
  56. 56.
    Simon, G., Fond, A., Berger, M.O.: A simple and effective method to detect orthogonal vanishing points in uncalibrated images of man-made environments. In: Eurographics 2016 (2016)Google Scholar
  57. 57.
    Strobl, K.H., Hirzinger, G.: More accurate pinhole camera calibration with imperfect planar target. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1068–1075 (2011)Google Scholar
  58. 58.
    Sukegawa, S., Umebayashi, T., Nakajima, T., Kawanobe, H., Koseki, K., Hirota, I., Haruta, T., Kasai, M., Fukumoto, K., Wakano, T., Inoue, K., Takahashi, H., Nagano, T., Nitta, Y., Hirayama, T., Fukushima, N.: A 1/4-inch 8 m pixel back-illuminated stacked cmos image sensor. In: 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 484–485 (2013)Google Scholar
  59. 59.
    Sun, J., Ma, Y., Yang, H., Zhu, X.: Camera calibration and its application of binocular stereo vision based on artificial neural network. In: International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 761–765. IEEE (2016)Google Scholar
  60. 60.
    Tao, Z.S., Tu, D.W., He, S.S., Ye, J.: A camera self-calibration for machine vision based on Kruppa’s equation. Appl. Mech. Mater. (2013)Google Scholar
  61. 61.
    Telle, B., Aldon, M.J., Ramdani, N.: Camera calibration and 3d reconstruction using interval analysis. In: Proceedings of the 12th International Conference on Image Analysis and Processing, 2003, pp. 374–379. IEEE (2003)Google Scholar
  62. 62.
    Telle, B., Stasse, O., Ueshiba, T., Yokoi, K., Tomita, F.: 3d boundaries partial representation of objects using interval analysis. In: IROS, pp. 4013–4018 (2004)Google Scholar
  63. 63.
    Tsai, R.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (1987)CrossRefGoogle Scholar
  64. 64.
    Vargas, A.C.G., Paes, A., Vasconcelos, C.N.: Um estudo sobre redes neurais convolucionais e sua aplicação em detecção de pedestres. In: Proceedings of the XXIX Conference on Graphics, Patterns and Images, pp. 1–4 (2016)Google Scholar
  65. 65.
    Wang, L., Wu, F., Hu, Z.: Multi-camera calibration with one-dimensional object under general motions. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–7 (2007)Google Scholar
  66. 66.
    Wang, L., Wang, W., Shen, C., Duan, F.: A convex relaxation optimization algorithm for multi-camera calibration with 1d objects. Neurocomputing 215, 82–89, sI: Stereo Data (2016)CrossRefGoogle Scholar
  67. 67.
    Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)CrossRefGoogle Scholar
  68. 68.
    Wildenauer, H., Hanbury, A.: Robust camera self-calibration from monocular images of manhattan worlds. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2831–2838 (2012)Google Scholar
  69. 69.
    Xu, J., Deng, F.: A camera self-calibration method based on ios-pso. Chin. Autom. Cong. (CAC) 2015, 489–494 (2015)Google Scholar
  70. 70.
    Yang, C., Lu, Z., Yang, Z., Liang, K.: Parameter identification for structural dynamics based on interval analysis algorithm. Acta Astronaut. 145, 131–140 (2018)CrossRefGoogle Scholar
  71. 71.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)CrossRefGoogle Scholar
  72. 72.
    Zhang, Z.: Camera calibration with one-dimensional objects. IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 892–899 (2004)CrossRefGoogle Scholar
  73. 73.
    Zhou, F., Cui, Y., Peng, B., Wang, Y.: A novel optimization method of camera parameters used for vision measurement. Opt. Laser Technol. 44(6), 1840–1849 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Federal University of Ouro PretoJoão MonlevadeBrazil
  2. 2.Federal Center of Technological Education of Minas GeraisBelo HorizonteBrazil
  3. 3.Federal University of ItajubáItabiraBrazil

Personalised recommendations