Advertisement

Data Fitting on Manifolds with Composite Bézier-Like Curves and Blended Cubic Splines

  • Pierre-Yves Gousenbourger
  • Estelle Massart
  • P.-A. Absil
Article
  • 40 Downloads

Abstract

We propose several methods that address the problem of fitting a \(C^1\) curve \(\gamma \) to time-labeled data points on a manifold. The methods have a parameter, \(\lambda \), to adjust the relative importance of the two goals that the curve should meet: being “straight enough” while fitting the data “closely enough.” The methods are designed for ease of use: they only require to compute Riemannian exponentials and logarithms, they represent the curve by means of a number of tangent vectors that grows linearly with the number of data points, and, once the representation is computed, evaluating \(\gamma (t)\) at any t requires a small number of exponentials and logarithms (independent of the number of data points). Among the proposed methods, the blended cubic spline technique combines the additional properties of interpolating the data when \(\lambda \rightarrow \infty \) and reducing to the well-known cubic smoothing spline when the manifold is Euclidean. The methods are illustrated on synthetic and real data.

Keywords

Riemannian manifold Data fitting Curve fitting Interpolation Smoothing Blended cubic spline 

Notes

Acknowledgements

The codes developed for this paper use the Manopt toolbox [7]. Special thanks to Benedikt Wirth for the very productive discussions: several methods presented here were conceived during an ongoing joint project on Bézier fitting surfaces.

References

  1. 1.
    Absil, P.A., Gousenbourger, P.Y., Striewski, P., Wirth, B.: Differentiable Piecewise-Bézier surfaces on Riemannian manifolds. SIAM J. Imaging Sci. 9(4), 1788–1828 (2016).  https://doi.org/10.1137/16M1057978 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton http://press.princeton.edu/chapters/absil/ (2008)
  3. 3.
    Arnould, A., Gousenbourger, P.Y., Samir, C., Absil, P.A., Canis, M.: Fitting smooth paths on Riemannian manifolds : endometrial surface reconstruction and preoperative MRI-based navigation. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information. Lecture Notes in Computer Sciences, vol. 9389, pp. 491–498. Springer, Berlin (2015).  https://doi.org/10.1007/978-3-319-25040-3_53 CrossRefGoogle Scholar
  4. 4.
    Bagaria, S.J., Rasalkar, D.D., Paunipagar, B.K.: Imaging Tools for Endometriosis: Role of Ultrasound. MRI and Other Imaging Modalities in Diagnosis and Planning Intervention, chap. 24, 437–447 (2012)Google Scholar
  5. 5.
    Bergmann, R., Gousenbourger, P.Y.: A variational model for data fitting on manifolds by minimizing the acceleration of a Bézier curve. arXiv preprint arXiv:1807.10090 (2018)
  6. 6.
    Boumal, N., Absil, P.A.: A discrete regression method on manifolds and its application to data on \(\text{SO}(n)\). In: IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 18, pp. 2284–2289 (2011).  https://doi.org/10.3182/20110828-6-IT-1002.00542 CrossRefGoogle Scholar
  7. 7.
    Boumal, N., Mishra, B., Absil, P.A., Sepulchre, R.: Manopt, a Matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15, 1455–1459 (2014). URL http://www.manopt.org
  8. 8.
    do Carmo, M.P.: Riemannian Geometry. Mathematics (Birkhäuser) Theory. Birkhäuser, Boston (1992).  https://doi.org/10.1007/978-0-387-29403-2
  9. 9.
    Crouch, P., Kun, G., Silva Leite, F.: De Casteljau algorithm on Lie groups and spheres. J. Dyn. Control Syst. 5(3), 397–429 (1999).  https://doi.org/10.1023/A:1021770717822 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dyn, N.: Linear and nonlinear subdivision schemes in geometric modeling. In: Cucker, F., Pinkus, A., Todd, M.J. (eds.) FoCum, London Math. Soc. Lecture Note Ser., vol. 363, Cambridge University Press, pp. 68–92 (2009).  https://doi.org/10.1017/CBO9781139107068.004
  11. 11.
    Farin, G.E.: Curves and Surfaces for CAGD, 5th edn. Academic Press, Cambridge (2002)Google Scholar
  12. 12.
    Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. 105(2), 171–185 (2013).  https://doi.org/10.1007/s11263-012-0591-y MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gousenbourger, P.Y., Massart, E., Musolas, A., Absil, P.A., Jacques, L., Hendrickx, J.M., Marzouk, Y.: Piecewise-Bézier C1 smoothing on manifolds with application to wind field estimation. In: ESANN2017, Springer,, pp. 305–310 (2017)Google Scholar
  14. 14.
    Green, P.J., Silverman, B.W.: Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. CRC Press, Boca Raton (1993)zbMATHGoogle Scholar
  15. 15.
    Hinkle, J., Fletcher, P.T., Joshi, S.: Intrinsic polynomials for regression on Riemannian manifolds. J. Math. Imaging Vis. 50(1), 32–52 (2014).  https://doi.org/10.1007/s10851-013-0489-5 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Itoh, J., Tanaka, M.: The dimension of a cut locus on a smooth Riemannian manifold. Tohoku Math. J. Second Ser. 50(4), 571–575 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jupp, P.E., Kent, J.T.: Fitting smooth paths to spherical data. J. Appl. Stat. 36(1), 34–46 (1987)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30(5), 509–541 (1977)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kim, K.R., Dryden, I.L., Le, H.: Smoothing splines on Riemannian manifolds, with applications to 3D shape space. arXiv preprint arXiv:1801.04978, pp. 1–23 (2018)
  20. 20.
    Lin, A., Walker, M.: CAGD techniques for differentiable manifolds. In: Proceedings of the 2001 International Symposium Algorithms for Approximation IV, pp. 36–43 (2001)Google Scholar
  21. 21.
    Lin, L., St Thomas, B., Zhu, H., Dunson, D.B.: Extrinsic local regression on manifold-valued data. J. Am. Stat. Assoc. 112(519), 1261–1273 (2017).  https://doi.org/10.1080/01621459.2016.1208615 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Machado, L., Leite, F.S.: Fitting smooth paths on Riemannian manifolds. Int. J. Appl. Math. Stat. 4(J06), 25–53 (2006)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Machado, L., Monteiro, M.T.T.: A numerical optimization approach to generate smoothing spherical splines. J. Geom. Phys. 111, 71–81 (2017).  https://doi.org/10.1016/j.geomphys.2016.10.007 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Massart, E., Absil, P.A.: Quotient geometry with simple geometry for the manifold of fixed-rank positive-semidefinite matrices. Technical Report, UCL-INMA-2018.06, UCLouvain. URL http://sites.uclouvain.be/absil/2018.06 (2018)
  25. 25.
    Modin, K., Bogfjellmo, G., Verdier, O.: Numerical algorithm for C2-splines on symmetric spaces. arXiv preprint arXiv:1703.09589 (2018)
  26. 26.
    O’Neill, B.: Elementary Differential Geometry. Academic Press, London (1966)zbMATHGoogle Scholar
  27. 27.
    Park, J.: Interpolation and tracking of rigid body orientations. In: ICCAS, pp. 668–673 (2010)Google Scholar
  28. 28.
    Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66(1), 41–66 (2006).  https://doi.org/10.1007/s11263-005-3222-z CrossRefzbMATHGoogle Scholar
  29. 29.
    Popiel, T., Noakes, L.: Bézier curves and C2 interpolation in Riemannian manifolds. J. Approx. Theory 148(2), 111–127 (2007).  https://doi.org/10.1016/j.jat.2007.03.002 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Pyta, L., Abel, D.: Interpolatory Galerkin models for Navier-Stokes-equations. IFAC-PapersOnLine 49(8), 204–209 (2016).  https://doi.org/10.1016/j.ifacol.2016.07.442 CrossRefGoogle Scholar
  31. 31.
    Rentmeesters, Q.: A gradient method for geodesic data fitting on some symmetric Riemannian manifolds. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 7141–7146 (2011).  https://doi.org/10.1109/CDC.2011.6161280
  32. 32.
    Samir, C., Absil, P.A., Srivastava, A., Klassen, E.: A Gradient-Descent method for curve fitting on Riemannian manifolds. Found. Comput. Math. 12(1), 49–73 (2012).  https://doi.org/10.1007/s10208-011-9091-7 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Shingel, T.: Interpolation in special orthogonal groups. IMA J. Numer. Anal. 29(3), 731–745 (2008)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Su, J., Dryden, I.L., Klassen, E., Le, H., Srivastava, A.: Fitting smoothing splines to time-indexed, noisy points on nonlinear manifolds. Image Vis. Comput. 30(6–7), 428–442 (2012).  https://doi.org/10.1016/j.imavis.2011.09.006 CrossRefGoogle Scholar
  35. 35.
    Süli, E., Mayers, D.: An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  36. 36.
    Vandereycken, B., Absil, P.A., Vandewalle, S.: Embedded geometry of the set of symmetric positive semidefinite matrices of fixed rank. In: IEEE/SP 15th Workshop on Statistical Signal Processing, 2009. SSP’09, IEEE, pp. 389–392 (2009)Google Scholar
  37. 37.
    Wallner, J., Nava Yazdani, E., Grohs, P.: Smoothness properties of Lie group subdivision schemes. Multiscale Model. Simul. 6(2), 493–505 (2007).  https://doi.org/10.1137/060668353 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Pierre-Yves Gousenbourger
    • 1
  • Estelle Massart
    • 2
  • P.-A. Absil
    • 2
  1. 1.ICTEAMUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.ICTEAMUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations