Advertisement

Journal of Mathematical Imaging and Vision

, Volume 61, Issue 4, pp 534–554 | Cite as

Fast Algorithm of 3D Discrete Image Orthogonal Moments Computation Based on 3D Cuboid

  • Tarik Jahid
  • Hicham KarmouniEmail author
  • Mhamed Sayyouri
  • Abdeslam Hmimid
  • Hassan Qjidaa
Article
  • 224 Downloads

Abstract

The rise of the digital imaging is remarkable, and the methods and techniques of image processing and analysis of the digital one must also accompany this technological evolution. In a line of research on the moments theory associated with digital imaging, values are extracted from digital images for the needs of classifications or even of reconstruction, as unique descriptors of an image, our work fits. In this paper, we propose a new method, fast and efficient, for calculating orthogonal moments on the discrete 3D image. We opted for the orthogonal polynomials of Meixner and for a new representation of the 3D image by cuboids having same gray levels called image cuboid representation. Based on this representation, we calculate the moments on each cuboid before summing all cuboids in order to obtain the global moments of a 3D image. Through a set of simulations, we prove that our method allows to reduce the time required for the calculation of moment on a 3D image of any size and any order, but not only, this method makes it possible to improve the quality of 3D image reconstruction from low-order moment.

Keywords

3D Meixner moments Recursive method 3D image cuboid representation 3D image reconstruction 

References

  1. 1.
    Zhu, H.: Image representation using separable two-dimensional continuous and discrete orthogonal moments. Pattern Recognit. 45, 1540–1558 (2012)CrossRefzbMATHGoogle Scholar
  2. 2.
    Rahmalan, H., Abu, N.A., Wong, S.L.: Using Tchebichef moment for fast and efficient image compression. Pattern Recognit. Image Anal. 20, 505–512 (2010)CrossRefGoogle Scholar
  3. 3.
    Tsougenis, E.D., Papakostas, G.A., Koulouriotis, D.E.: Image watermarking via separable moments. Multimed. Tools Appl. 74, 3985–4012 (2015)CrossRefGoogle Scholar
  4. 4.
    Hmimid, A., Sayyouri, M., Qjidaa, H.: Fast computation of separable two-dimensional discrete invariant moments for image classification. Pattern Recognit. 48, 509–521 (2015)CrossRefzbMATHGoogle Scholar
  5. 5.
    Mandal, M.K., Aboulnasr, T., Panchanathan, S.: Image indexing using moments and wavelets. IEEE Trans. Consum. Electron. 42(3), 557–565 (1996)CrossRefGoogle Scholar
  6. 6.
    Sayyouri, M., Hmimid, A., Qjidaa, H.: Improving the performance of image classification by Hahn moment invariants. JOSA A 30(11), 2381–2394 (2013)CrossRefzbMATHGoogle Scholar
  7. 7.
    Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Pattern Recognit. 26, 167–174 (1993)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Liu, X.L., Han, G.N., Wu, J.S., Shao, Z.H., Coatrieux, G., Shu, H.Z.: Fractional Krawtchouk transform with an application to image watermarking. IEEE Trans. Signal Process. 65(7), 1894–1908 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, B.J., Coatrieux, G., Wu, J.S., Dong, Z.F., Coatrieux, J.L., Shu, H.Z.: Fast computation of sliding discrete Tchebichef moments and its application in duplicated regions detection. IEEE Trans. Signal Process. 63(20), 5424–5436 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wu, J.S., Qiu, S.J., Kong, Y.Y., Chen, Y., Senhadji, L., Shu, H.Z.: MomentsNet: a simple learning-free method for binary image recognition. In: 2017 IEEE International Conference on Image Processing, IEEE ICIP, pp. 2667–2671 (2017)Google Scholar
  11. 11.
    Hu, M.-K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hickman, M.S.: Geometric moments and their invariants. J. Math. Imaging Vis. 44(3), 223–235 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhang, H., Shu, H., Han, G.-N., Coatrieux, G., Luo, L., Coatrieux, J.L.: Blurred image recognition by Legendre moment invariants. IEEE Trans. Image Process. 19(3), 596–611 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wee, C.-Y., Paramesran, R.: Derivation of blur-invariant features using orthogonal Legendre moments. IET Comput. Vis. 1(2), 66–77 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zhu, H., Liu, M., Ji, H., Li, Y.: Combined invariants to blur and rotation using Zernike moment descriptors. Pattern Anal. Appl. 3(13), 309–319 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Farokhi, S., Sheikh, U.U., Flusser, J., Yang, B.: Near infrared face recognition using Zernike moments and Hermite kernels. Inf. Sci. 316, 234–245 (2015)CrossRefGoogle Scholar
  18. 18.
    Hosny, K.M.: Fast computation of accurate Gaussian–Hermite moments for image processing applications. Digit. Signal Process. 22(3), 476–485 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hosny, K.M.: Image representation using accurate orthogonal Gegenbauer moments. Pattern Recognit. Lett. 32(6), 795–804 (2011)CrossRefGoogle Scholar
  20. 20.
    Upneja, R., Singh, C.: Fast computation of Jacobi–Fourier moments for invariant image recognition. Pattern Recognit. 48(5), 1836–1843 (2015)CrossRefzbMATHGoogle Scholar
  21. 21.
    Wang, G., Wang, S.: Recursive computation of Tchebichef moment and its inverse transform. Pattern Recognit. 39(1), 47–56 (2006)CrossRefGoogle Scholar
  22. 22.
    Chang, K.-H., Paramesran, R., Honarvar, B., Lim, C.-L.: Efficient hardware accelerators for the computation of Tchebichef moments. IEEE Trans. Circuits Syst. Video Technol. 22(3), 414–425 (2012)CrossRefGoogle Scholar
  23. 23.
    Honarvar, B., Flusser, J.: Fast computation of Krawtchouk moments. Inf. Sci. 288, 73–86 (2014)CrossRefzbMATHGoogle Scholar
  24. 24.
    Zhang, L., Xiao, W.-W., Ji, Z.: Local affine transform invariant image watermarking by Krawtchouk moment invariants. IET Inf. Secur. 1(3), 97–105 (2007)CrossRefGoogle Scholar
  25. 25.
    Yap, P.-T., Paramesran, R., Ong, S.-H.: Image analysis using Hahn moments. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2057–2062 (2007)CrossRefGoogle Scholar
  26. 26.
    Wu, H., Yan, S.: Bivariate Hahn moments for image reconstruction. Int. J. Appl. Math. Comput. Sci. 24(2), 417–428 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hmimid, A., Sayyouri, M., Qjidaa, H.: Image classification using a new set of separable two-dimensional discrete orthogonal invariant moments. J. Electron. Imaging 23(1), 013026 (2014)CrossRefzbMATHGoogle Scholar
  28. 28.
    Sayyouri, M., Hmimid, A., Qjidaa, H.: A fast computation of novel set of Meixner invariant moments for image analysis. Circuits Syst. Signal Process. 34(3), 875–900 (2015)CrossRefzbMATHGoogle Scholar
  29. 29.
    Papakostas, G.A., Karakasis, E.G., Koulouriotis, D.E.: Efficient and accurate computation of geometric moments on gray-scale images. Pattern Recognit. 41(6), 1895–1904 (2008)CrossRefzbMATHGoogle Scholar
  30. 30.
    Shu, H., Zhang, H., Chen, B., Haigron, P., Luo, L.: Fast computation of Tchebichef moments for binary and grayscale images. IEEE Trans. Image Process. 19(12), 3171–3180 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Honarvar, B., Paramesran, R., Lim, C.-L.: The fast recursive computation of Tchebichef moment and its inverse transform based on Z-transform. Digit. Signal Process. 23(5), 1738–1746 (2013)CrossRefGoogle Scholar
  32. 32.
    Hwang, S.-K., Kim, W.-Y.: A novel approach to the fast computation of Zernike moments. Pattern Recognit. 39(11), 2065–2076 (2006)CrossRefzbMATHGoogle Scholar
  33. 33.
    Spiliotis, I.M., Mertzios, B.G.: Real-time computation of two-dimensional moments on binary images using image block representation. IEEE Trans. Image Process. 7(11), 1609–1615 (1998)CrossRefGoogle Scholar
  34. 34.
    Fu, B., Zhou, J.-Z., Li, Y.-H., Peng, B., Liu, L.-Y., Wen, J.-Q.: Novel recursive and symmetric algorithm of computing two kinds of orthogonal radial moments. Image Sci. J. 56(6), 333–341 (2008)CrossRefGoogle Scholar
  35. 35.
    Nikiforov, A.F., Suslov, S.K., Uvarov, B.: Classical orthogonal polynomials of a discrete variable. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  36. 36.
    Hmimid, A., Sayyouri, M., Qjidaa, H.: Image classification using novel set of Charlier moment invariants. WSEAS Trans. Signal Process. 10(1), 156–167 (2014)zbMATHGoogle Scholar
  37. 37.
    Papakostas, G.A., Koulouriotis, D.E., Karakasis, E.G.: A unified methodology for the efficient computation of discrete orthogonal image moments. Inf. Sci. 179, 3619–3633 (2009)MathSciNetCrossRefGoogle Scholar
  38. 38.
  39. 39.
    Wu, H., Coatrieux, J.L., Shu, H.: New algorithm for constructing and computing scale invariants of 3D Tchebichef moments. Math. Probl. Eng. 2013, 813606 (2013)MathSciNetGoogle Scholar
  40. 40.
    Karmouni, H., Hmimid, A., Jahid, T., Sayyouri, M., Qjidaa, H., Rezzouk, A.: Fast and stable computation of the Charlier moments and their inverses using digital filters and image block representation. Circuits Syst. Signal Process. 37, 4015–4033 (2018)CrossRefGoogle Scholar
  41. 41.
    Jahid, T., Hmimid, A., Karmouni, H., Sayyouri, M., Qjidaa, H., Rezzouk, A.: Image analysis by Meixner moments and a digital filter. Multimed. Tools Appl. 77, 19811–19831 (2017)CrossRefGoogle Scholar
  42. 42.
    Jain, A.K.: Fundamentals of Digital Image Processing. Information & Series. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  43. 43.
    Batioua, I., Benouini, R., Zenkouar, K., Zahi, A.: 3D image analysis by separable discrete orthogonal moments based on Krawtchouk and Tchebichef polynomials. Pattern Recognit. 71, 264–277 (2017)CrossRefGoogle Scholar
  44. 44.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  45. 45.
    Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CED-ST, STIC, Laboratory of Electronic Signals and Systems of Information LESSI, Faculty of Science Dhar El MahrezUniversity Sidi Mohamed Ben Abdellah-FezFezMorocco
  2. 2.Laboratoire des Sciences de l’Ingénieur pour l’Energie, Ecole Nationale des Sciences Appliquées d’El JadidaUniversité Chouaïb DoukkaliEL Jadida PlateauMorocco

Personalised recommendations