Journal of Mathematical Imaging and Vision

, Volume 61, Issue 4, pp 411–431 | Cite as

Discrete Total Variation with Finite Elements and Applications to Imaging

  • Marc Herrmann
  • Roland HerzogEmail author
  • Stephan Schmidt
  • José Vidal-Núñez
  • Gerd Wachsmuth


The total variation (TV)-seminorm is considered for piecewise polynomial, globally discontinuous (DG) and continuous (CG) finite element functions on simplicial meshes. A novel, discrete variant (DTV) based on a nodal quadrature formula is defined. DTV has favorable properties, compared to the original TV-seminorm for finite element functions. These include a convenient dual representation in terms of the supremum over the space of Raviart–Thomas finite element functions, subject to a set of simple constraints. It can therefore be shown that a variety of algorithms for classical image reconstruction problems, including TV-\(L^2\) denoising and inpainting, can be implemented in low- and higher-order finite element spaces with the same efficiency as their counterparts originally developed for images on Cartesian grids.


Discrete total variation Dual problem Image reconstruction Numerical algorithms 

Mathematics Subject Classification

94A08 68U10 49M29 65K05 



This work was supported by DFG Grants HE 6077/10–1 and SCHM 3248/2–1 within Priority Program SPP 1962 (Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization), which is gratefully acknowledged. The authors would like to thank Jan Blechta for help with custom quadrature schemes in FEniCS. Part of this research was contrived, while the second author was visiting the University of British Columbia, Vancouver. He would like to thank the Department of Computer Science for their hospitality. Moreover, the authors would like to thank two anonymous reviewers for their constructive comments, which helped improve the presentation of the paper.


  1. 1.
    Alkämper, M., Langer, A.: Using DUNE-ACFem for non-smooth minimization of bounded variation functions. Arch. Numer. Softw. 5(1), 3–19 (2017). Google Scholar
  2. 2.
    Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9–23 (2015). Google Scholar
  3. 3.
    Antonietti, P.F., Ayuso, B.: Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case. M2AN Math. Model. Numer. Anal. 41(1), 21–54 (2007). MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bachmayr, M., Burger, M.: Iterative total variation schemes for nonlinear inverse problems. Inverse Probl. 25(10), 105004–105026 (2009). MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bartels, S.: Total variation minimization with finite elements: convergence and iterative solution. SIAM J. Numer. Anal. 50(3), 1162–1180 (2012). MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bartels, S., Nochetto, R.H., Salgado, A.J.: Discrete total variation flows without regularization. SIAM J. Numer. Anal. 52(1), 363–385 (2014). MathSciNetzbMATHGoogle Scholar
  7. 7.
    Beck, A.: First-Order Methods in Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2017). zbMATHGoogle Scholar
  8. 8.
    Ben-Ezra, M., Lin, Z., Wilburn, B., Zhang, W.: Penrose pixels for super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1370–1383 (2011). Google Scholar
  9. 9.
    Berkels, B., Effland, A., Rumpf, M.: A posteriori error control for the binary Mumford–Shah model. Math. Comput. 86(306), 1769–1791 (2017). MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imag. Sci. 3(3), 492–526 (2010). MathSciNetzbMATHGoogle Scholar
  11. 11.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imag. Vis. 20(1–2), 89–97 (2004). (Special issue on mathematics and image analysis)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. Theoretical Foundations and Numerical Methods for Sparse Recovery. Radon Series on Computational and Applied Mathematics, vol. 9, pp. 263–340. Walter de Gruyter, Berlin (2010). Google Scholar
  13. 13.
    Chambolle, A., Pock, T.: A first-order primal–dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40(1), 120–145 (2011). MathSciNetzbMATHGoogle Scholar
  14. 14.
    Chambolle, A., Pock, T.: Crouzeix–Raviart approximation of the total variation on simplicial meshes. Tech. rep. (2018).
  15. 15.
    Chan, T.F., Esedoglu, S.: Aspects of total variation regularized \(L^1\) function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005). MathSciNetzbMATHGoogle Scholar
  16. 16.
    Chan, T.F., Tai, X.C.: Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comput. Phys. 193(1), 40–66 (2004). MathSciNetzbMATHGoogle Scholar
  17. 17.
    Clason, C., Kruse, F., Kunisch, K.: Total variation regularization of multi-material topology optimization. ESAIM Control Optim. Calc. Var. 52(1), 275–303 (2018). MathSciNetzbMATHGoogle Scholar
  18. 18.
    Coleman, S., Scotney, B., Gardiner, B.: Tri-directional gradient operators for hexagonal image processing. J. Vis. Commun. Image Represent. 38, 614–626 (2016). Google Scholar
  19. 19.
    Condat, L.: Discrete total variation: new definition and minimization. SIAM J. Imag. Sci. 10(3), 1258–1290 (2017). MathSciNetzbMATHGoogle Scholar
  20. 20.
    Dahlquist, G., Björck, A.: Numerical Methods in Scientific Computing, vol. I. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008). zbMATHGoogle Scholar
  21. 21.
    Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Computer Science and Applied Mathematics, 2nd edn. Academic Press, Orlando (1984)zbMATHGoogle Scholar
  22. 22.
    Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the \(\ell _1\)-ball for learning in high dimensions. In: Proceedings of the 25th International Conference on Machine Learning ICML 2008, pp. 272–279. ACM Press (2008).
  23. 23.
    Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics, vol. 28. SIAM, Philadelphia (1999)zbMATHGoogle Scholar
  24. 24.
    Elliott, C.M., Smitheman, S.A.: Numerical analysis of the TV regularization and \(H^{-1}\) fidelity model for decomposing an image into cartoon plus texture. IMA J. Numer. Anal. 29(3), 651–689 (2009). MathSciNetzbMATHGoogle Scholar
  25. 25.
    Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer, Berlin (2004)zbMATHGoogle Scholar
  26. 26.
    Esedoglu, S., Osher, S.J.: Decomposition of images by the anisotropic Rudin–Osher–Fatemi model. Commun. Pure Appl. Math. 57(12), 1609–1626 (2004). MathSciNetzbMATHGoogle Scholar
  27. 27.
    Feng, X., Prohl, A.: Analysis of total variation flow and its finite element approximations. M2AN Math. Model. Numer. Anal. 37(3), 533–556 (2003). MathSciNetzbMATHGoogle Scholar
  28. 28.
    Gellert, M., Harbord, R.: Moderate degree cubature formulas for 3-d tetrahedral finite-element approximations. Commun. Appl. Numer. Methods 7(6), 487–495 (1991). zbMATHGoogle Scholar
  29. 29.
    Goldluecke, B., Strekalovskiy, E., Cremers, D.: The natural vectorial total variation which arises from geometric measure theory. SIAM J. Imag. Sci. 5(2), 537–564 (2012). MathSciNetzbMATHGoogle Scholar
  30. 30.
    Goldstein, T., Osher, S.: The split Bregman method for \(L1\)-regularized problems. SIAM J. Imag. Sci. 2(2), 323–343 (2009). MathSciNetzbMATHGoogle Scholar
  31. 31.
    He, B., Yuan, X.: Convergence analysis of primal–dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imag. Sci. 5(1), 119–149 (2012). MathSciNetzbMATHGoogle Scholar
  32. 32.
    Herrmann, M., Herzog, R., Kröner, H., Schmidt, S., Vidal-Núñez, J.: Analysis and an interior point approach for TV image reconstruction problems on smooth surfaces. SIAM J. Imag. Sci. 11(2), 889–922 (2018). MathSciNetzbMATHGoogle Scholar
  33. 33.
    Herrmann, M., Herzog, R., Schmidt, S., Vidal-Núñez, J., Wachsmuth, G.: Discrete total variation with finite elements and applications to imaging (2018. arXiv:1804.07477
  34. 34.
    Hintermüller, M., Kunisch, K.: Total bounded variation regularization as a bilaterally constrained optimization problem. SIAM J. Appl. Math. 64(4), 1311–1333 (2004). MathSciNetzbMATHGoogle Scholar
  35. 35.
    Jensen, J.R.: Introductory Digital Image Processing: A Remote Sensing Perspective, 4th edn. Prentice-Hall, Englewood Cliffs (2015)Google Scholar
  36. 36.
    Knaup, M., Steckmann, S., Bockenbach, O., Kachelrie, M.: CT image reconstruction using hexagonal grids. In: 2007 IEEE Nuclear Science Symposium Conference Record, pp. 3074–3076. IEEE (2007).
  37. 37.
    Lee, C.O., Park, E.H., Park, J.: A finite element approach for the dual total variation minimization and its nonoverlapping domain decomposition methods (2018). arXiv:1805.02562
  38. 38.
    Li, J., Bai, C., Lin, Z., Yu, J.: Penrose high-dynamic-range imaging. J. Electron. Imag. 25(3), 033024 (2016). Google Scholar
  39. 39.
    Logg, A., Mardal, K.A., Wells, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012). zbMATHGoogle Scholar
  40. 40.
    López Pérez, L.D.: Régularisation d’images sur des surfaces non planes. Ph.D. thesis, Université de Nice-Sophia Antipolis (2006).
  41. 41.
    Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imag. Vis. 20(1–2), 99–120 (2004). (Special issue on mathematics and image analysis)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods, Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975). Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin (1977)Google Scholar
  43. 43.
    Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Society for Industrial and Applied Mathematics, Philadelphia (2008). zbMATHGoogle Scholar
  44. 44.
    Rivière, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I. Comput. Geosci. 3(3-4), 337–360 (2000) (1999).
  45. 45.
    Rognes, M.E., Kirby, R.C., Logg, A.: Efficient assembly of H(div) and H(curl) conforming finite elements. SIAM J. Sci. Comput. 31(6), 4130–4151 (2009). MathSciNetzbMATHGoogle Scholar
  46. 46.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992). MathSciNetzbMATHGoogle Scholar
  47. 47.
    Sasao, T., Hiura, S., Sato, K.: Super-resolution with randomly shaped pixels and sparse regularization. In: IEEE International Conference on Computational Photography (ICCP). IEEE (2013).
  48. 48.
    Silvester, P.: Symmetric quadrature formulae for simplexes. Math. Comput. 24, 95–100 (1970). MathSciNetzbMATHGoogle Scholar
  49. 49.
    Stamm, B., Wihler, T.P.: A total variation discontinuous Galerkin approach for image restoration. Int. J. Numer. Anal. Model. 12(1), 81–93 (2015)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Sugathan, S., Scaria, R., James, A.P.: Adaptive digital scan variable pixels. In: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE (2015).
  51. 51.
    Taylor, M.A., Wingate, B.A., Bos, L.P.: A cardinal function algorithm for computing multivariate quadrature points. SIAM J. Numer. Anal. 45(1), 193–205 (2007). MathSciNetzbMATHGoogle Scholar
  52. 52.
    Wandzura, S., Xiao, H.: Symmetric quadrature rules on a triangle. Comput. Math. Appl. Int. J. 45(12), 1829–1840 (2003). MathSciNetzbMATHGoogle Scholar
  53. 53.
    Wu, C., Zhang, J., Duan, Y., Tai, X.C.: Augmented Lagrangian method for total variation based image restoration and segmentation over triangulated surfaces. J. Sci. Comput. 50(1), 145–166 (2012). MathSciNetzbMATHGoogle Scholar
  54. 54.
    Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., Zhang, L.: Image super-resolution: the techniques, applications, and future. Signal Process. 128, 389–408 (2016). Google Scholar
  55. 55.
    Zhang, L., Cui, T., Liu, H.: A set of symmetric quadrature rules on triangles and tetrahedra. J. Comput. Math. 27(1), 89–96 (2009)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of MathematicsTU ChemnitzChemnitzGermany
  2. 2.Lehrstuhl für Mathematik VI, Faculty of Mathematics and Computer ScienceJulius-Maximilians-Universität WürzburgWürzburgGermany
  3. 3.Chair of Optimal Control, Institute of MathematicsBrandenburgische Technische Universität Cottbus-SenftenbergCottbusGermany

Personalised recommendations