Advertisement

Journal of Mathematical Imaging and Vision

, Volume 61, Issue 2, pp 224–236 | Cite as

Combinatorics of the Gauss Digitization Under Translation in 2D

  • Étienne BaudrierEmail author
  • Loïc Mazo
Article
  • 24 Downloads

Abstract

The action of a translation on a continuous object before its digitization generates several digital objects. This paper focuses on the combinatorics of the generated digital objects up to integer translations. In the general case, a worst-case upper bound is exhibited and proved to be reached on an example. Another upper bound is also proposed by making a link between the number of the digital objects and the boundary curve, through its self-intersections on the torus. An upper bound, quadratic in digital perimeter, is then derived in the convex case and eventually an asymptotic upper bound, quadratic in the grid resolution, is exhibited in the polygonal case. A few significant examples finish the paper.

Keywords

Discrete geometry Gauss digitization Translation Combinatorics 

Notes

Supplementary material

References

  1. 1.
    Baudrier, É., Mazo, L.: Curve digitization variability. In: Normand, N, Guédon, J, Autrusseau, F (eds.) Discrete Geometry for Computer Imagery. DGCI 2016, Lecture Notes in Computer Science, vol. 9647, pp. 59–70. Springer, Heidelberg, IAPR (2016)  https://doi.org/10.1007/978-3-319-32360-2_5
  2. 2.
    Berger, M.: Geometry I. Universitext. Springer-Verlag Berlin Heidelberg (1987).  https://doi.org/10.1007/978-3-540-93815-6
  3. 3.
    Dorst, L., Smeulders, A.W.M.: Discrete representation of straight lines. IEEE Trans. Pattern Anal. Mach. Intell. 6(4), 450–463 (1984), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4767550
  4. 4.
    Feschet, F., Tougne, L.: An approach for the estimation of the precision of a real object from its digitization. Discret. Appl. Math. 139(1–3), 51–63 (2004).  https://doi.org/10.1016/j.dam.2002.11.009 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Heath-Brown, D.: Lattice points in the sphere. Number Theory Prog. 2, 883–892 (1997)zbMATHGoogle Scholar
  6. 6.
    Huxley, M.N.: The number of configurations in lattice point counting I. Forum Math. 22(1), 127–152 (2010).  https://doi.org/10.1112/plms/pdt011 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Huxley, M.N., Žunić, J.D.: On the number of digitizations of a disc depending on its position. In: Combinatorial Image Analysis, 10th Int Workshop, IWCIA 2004, New Zealand. pp. 219–231 (2004)  https://doi.org/10.1007/978-3-540-30503-3_17
  8. 8.
    Huxley, M.N., Žunić, J.D.: Different digitisations of displaced discs. Found Comput. Math. 6(2), 255–268 (2006).  https://doi.org/10.1007/s10208-005-0177-y MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Huxley, M.N., Žunić, J.D.: The number of \(N\)-point digital discs. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 159–161 (2007).  https://doi.org/10.1109/TPAMI.2007.250606 CrossRefGoogle Scholar
  10. 10.
    Huxley, M.N., Žunić, J.D.: The number of different digital \(N\)-discs. J. Math. Imaging Vision 56(3), 403–408 (2016).  https://doi.org/10.1007/s10851-016-0643-y MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mazo, J.E., Odlyzko, A.M.: Lattice points in high-dimensional spheres. Monatshefte für Mathematik 110(1), 47–61 (1990).  https://doi.org/10.1007/BF01571276 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mazo, L., Baudrier, É.: Object digitization up to a translation. J. Comput. Syst. Sci. (2017).  https://doi.org/10.1016/j.jcss.2017.08.001 zbMATHGoogle Scholar
  13. 13.
    Mazo, L., Baudrier, É.: Study on the digitization dual combinatorics and convex case. In: Kropatsch, W.G., Artner, N.M., Janush, I. (eds.) Discrete Geometry for Computer Imagery DGCI. Lecture Notes in Computer Science, vol. 10502, pp. 363–374. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-66272-5_29 CrossRefGoogle Scholar
  14. 14.
    Nagy, B.: An algorithm to find the number of the digitizations of discs with a fixed radius. Electron. Notes Discret. Math. 20, 607–622 (2005).  https://doi.org/10.1016/j.endm.2005.04.006 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid transformations in 2D digital images. Comput. Vision Image Underst. 117(4), 393–408 (2013).  https://doi.org/10.1016/j.cviu.2012.08.014 CrossRefzbMATHGoogle Scholar
  16. 16.
    Nouvel, B., Rémila, É.: Configurations induced by discrete rotations: periodicity and quasi-periodicity properties. Discret. Appl. Math. 147(2), 325–343 (2005).  https://doi.org/10.1016/j.dam.2004.09.018 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: J. Math. Imaging Vision 59(1), 84–105 (2017).  https://doi.org/10.1007/s10851-017-0706-8 MathSciNetCrossRefGoogle Scholar
  18. 18.
    Weyl, H.: Über die gleichverteilung von zahlen mod. Eins [on the distribution of numbers modulo one]. Math. Ann. 77(3), 313–352 (1916).  https://doi.org/10.1007/BF01475864. (in German)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Žunić, J.D.: On the number of digital discs. J. Math. Imaging Vision 21(3), 199–204 (2004).  https://doi.org/10.1023/B:JMIV.0000043736.15525.ed MathSciNetCrossRefGoogle Scholar
  20. 20.
    Žunić, J.D.: On the number of ways to occupy \(n\) lattice points by balls in \(d\)-dimensional space. J. Number Theory 110(2), 396–402 (2005).  https://doi.org/10.1016/j.jnt.2004.08.004 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ICube, University of Strasbourg, CNRSIllkirchFrance

Personalised recommendations