Journal of Mathematical Imaging and Vision

, Volume 61, Issue 2, pp 204–223

# Geometric Preservation of 2D Digital Objects Under Rigid Motions

• Phuc Ngo
• Nicolas Passat
• Yukiko Kenmochi
• Isabelle Debled-Rennesson
Article

## Abstract

Rigid motions (i.e. transformations based on translations and rotations) are simple, yet important, transformations in image processing. In $$\mathbb {R}^n$$, they are both topology and geometry preserving. Unfortunately, these properties are generally lost in $$\mathbb {Z}^n$$. In particular, when applying a rigid motion on a digital object, one generally alters its structure but also the global shape of its boundary. These alterations are mainly caused by digitization during the transformation process. In this specific context, some solutions for the handling of topological issues were proposed in $$\mathbb {Z}^2$$. In this article, we also focus on geometric issues in $$\mathbb {Z}^2$$. Indeed, we propose a rigid motion scheme that preserves geometry and topology properties of the transformed digital object: a connected object will remain connected, and some geometric properties (e.g. convexity, area and perimeter) will be preserved. To reach that goal, our main contributions are twofold. First, from an algorithmic point of view, our scheme relies on (1) a polygonization of the digital object, (2) the transformation of the intermediate piecewise affine object of $$\mathbb {R}^2$$ and (3) a digitization step for recovering a result within $$\mathbb {Z}^2$$. The intermediate modeling of a digital object of $$\mathbb {Z}^2$$ as a piecewise affine object of $$\mathbb {R}^2$$ allows us to avoid the geometric alterations generally induced by standard pointwise rigid motions. However, the final digitization of the polygon back to $$\mathbb {Z}^2$$ has to be carried out cautiously. In particular, our second, theoretical contribution is a notion of quasi-regularity that provides sufficient conditions to be fulfilled by a continuous object for guaranteeing both topology and geometry preservation during its digitization.

## Keywords

Rigid motions Geometry and topology preservation Polygonization Digitization Quasi-r-regularity

## Notes

### Acknowledgements

We would like to thank the anonymous referees for their valuable comments. In particular, we are especially grateful to referee 3, who pointed out an improved definition of quasi-r-regularity.

This work was partly funded by the French Agence Nationale de la Recherche, grant agreement ANR-15-CE40-0006 (CoMeDiC, https://lama.univ-savoie.fr/comedic), by the French Programmed’Investissements d’Avenir (LabEx Bézout, ANR-10-LABX-58) and by a mobility grant from the French Groupe de Recherche IGRV (CNRS).

## References

1. 1.
Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)Google Scholar
2. 2.
Faisan, S., Passat, N., Noblet, V., Chabrier, R., Meyer, C.: Topology-preserving warping of binary images according to one-to-one mappings. IEEE Trans. Image Process. 20(8), 2135–2145 (2011)
3. 3.
Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid transformations in 2D digital images. Comput. Vis. Image Underst. 117(4), 393–408 (2013)
4. 4.
Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijective digitized rigid motions on subsets of the plane. J. Math. Imaging Vis. 59(1), 84–105 (2017)
5. 5.
Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Topology-preserving conditions for 2D digital images under rigid transformations. J. Math. Imaging Vis. 49(2), 418–433 (2014)
6. 6.
Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transformation of 2D digital images. IEEE Trans. Image Process. 23(2), 885–897 (2014)
7. 7.
Pavlidis, T.: Algorithms for Graphics and Image Processing. Springer, Berlin (1982)
8. 8.
Ngo, P., Kenmochi, Y., Debled-Rennesson, I., Passat, N.: Convexity-preserving rigid motions of 2D digital objects. In: Discrete Geometry for Computer Imagery, Vol. 1568, pp. 69–81 (2017)Google Scholar
9. 9.
Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Elsevier, Amsterdam (2004)
10. 10.
Mazo, L., Passat, N., Couprie, M., Ronse, C.: Digital imaging: a unified topological framework. J. Math. Imaging Vis. 44(1), 19–37 (2012)
11. 11.
Yung Kong, T., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Gr. Image Process. 48(3), 357–393 (1989)Google Scholar
12. 12.
Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc, Orlando (1983)Google Scholar
13. 13.
Latecki, L.J., Conrad, C., Gross, A.: Preserving topology by a digitization process. J. Math. Imaging Vis. 8(2), 131–159 (1998)
14. 14.
Stelldinger, P., Köthe, U.: Towards a general sampling theory for shape preservation. Image Vis. Comput. 23(2), 237–248 (2005)
15. 15.
Rosenfeld, A.: Adjacency in digital pictures. Inf. Control 26(1), 24–33 (1974)
16. 16.
Rosenfeld, A., Kong, T.Y., Nakamura, A.: Topology-preserving deformations of two-valued digital pictures. Gr. Models Image Process. 60(1), 24–34 (1998)Google Scholar
17. 17.
Boutry, N., Géraud, T., Najman, L.: A tutorial on well-composedness. J. Math. Imaging Vis. 60(3), 443–478 (2018)
18. 18.
Maunder, C.R.F.: Algebraic Topology. Dover, New York (1996)
19. 19.
Rosenfeld, A.: Digital topology. Am. Math. Mon. 86(8), 621–630 (1979)
20. 20.
Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Underst. 61(1), 70–83 (1995)Google Scholar
21. 21.
Heijmans, H.J.A.M., Ronse, C.: The algebraic basis of mathematical morphology. I Dilations and erosions. CVGIP Image Underst. 50(3), 245–295 (1990)
22. 22.
Ronse, C., Heijmans, H.J.A.M.: The algebraic basis of mathematical morphology: II. Openings and closings. CVGIP Image Underst. 54(1), 74–97 (1991)
23. 23.
Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry. MIT Press, Reading, MA (1969)
24. 24.
Sklansky, J.: Recognition of convex blobs. Pattern Recognit. 2(1), 3–10 (1970)Google Scholar
25. 25.
Kim, C.E.: On the cellular convexity of complexes. IEEE Trans. Pattern Anal. Mach. Intell. 3(6), 617–625 (1981)Google Scholar
26. 26.
Eckhardt, U.: Digital lines and digital convexity. In: Digital and Image Geometry: Advanced Lectures, pp. 209–228 (2001)Google Scholar
27. 27.
Kim, C.E., Rosenfeld, A.: Digital straight lines and convexity of digital regions. IEEE Trans. Pattern Anal. Mach. Intell. 4(2), 149–153 (1982)
28. 28.
Cristescu, G., Lupsa, L.: Non-Connected Convexities and Applications. Kluwer Academic Publishers, Dordrecht (2002)
29. 29.
Debled-Rennesson, I., Rémy, J.-L., Rouyer-Degli, J.: Detection of the discrete convexity of polyominoes. Discret. Appl. Math. 125(1), 115–133 (2003)
30. 30.
Debled-Rennesson, I., Reveillès, J.: A linear algorithm for segmentation of digital curves. Int. J. Pattern Recognit. Artif. Intell. 9(4), 635–662 (1995)Google Scholar
31. 31.
Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: application to the curvature. In: Discrete Geometry for Computer Imagery, Vol. 1568, pp. 31–40 (1999)Google Scholar
32. 32.
Brlek, S., Lachaud, J., Provençal, X., Reutenauer, C.: Lyndon + Christoffel = digitally convex. Pattern Recognit. 42(10), 2239–2246 (2009)
33. 33.
Duval, J.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)
34. 34.
Melkman, A.A.: On-line construction of the convex hull of a simple polyline. Inf. Process. Lett. 25(1), 11–12 (1987)
35. 35.
Anglin, W.S.: Using Pythagorean triangles to approximate angles. Am. Math. Mon. 95(6), 540–541 (1988)
36. 36.
Sivignon, I., Breton, R., Dupont, F., Andres, E.: Discrete analytical curve reconstruction without patches. Image Vis. Comput. 23(2), 191–202 (2005)Google Scholar
37. 37.
Dexet, M., Coeurjolly, D., Andres, E.: Invertible polygonalization of 3D planar digital curves and application to volume data reconstruction. In: International Symposium on Visual Computing, Vol. 4292, pp. 514–523 (2006)Google Scholar
38. 38.
Vittone, J., Chassery, J.-M.: Recognition of digital naive planes and polyhedrization. In: Discrete Geometry for Computer Imagery, Vol. 1953, pp. 296–307 (2000)Google Scholar
39. 39.
Feschet, F., Tougne, L.: On the min DSS problem of closed discrete curves. Discret. Appl. Math. 151(1–3), 138–153 (2005)
40. 40.
Dörksen-Reiter, H., Debled-Rennesson, I.: Convex and concave parts of digital curves. In: Geometric Properties for Incomplete Data, pp. 145–159 (2006)Google Scholar
41. 41.
Dörksen-Reiter, H., Debled-Rennesson, I.: A linear algorithm for polygonal representations of digital sets. In: International Workshop on Combinatorial Image Analysis, Vol. 4040, pp. 307–319 (2006)Google Scholar
42. 42.
Roussillon, T., Sivignon, I.: Faithful polygonal representation of the convex and concave parts of a digital curve. Pattern Recognit. 44(10–11), 2693–2700 (2011)
43. 43.
Nguyen, T.P., Debled-Rennesson, I.: A discrete geometry approach for dominant point detection. Pattern Recognit. 44(1), 32–44 (2011)
44. 44.
Ngo, P., Nasser, H., Debled-Rennesson, I.: Efficient dominant point detection based on discrete curve structure. In: International Workshop on Combinatorial Image Analysis, Vol. 9448, pp. 143–156 (2015)Google Scholar
45. 45.
Gérard, Y., Provot, L., Feschet, F.: Introduction to digital level layers. In: Discrete Geometry for Computer Imagery, Vol. 6607, pp. 83–94 (2011)Google Scholar
46. 46.
Sivignon, I.: A near-linear time guaranteed algorithm for digital curve simplification under the Fréchet distance. In: Discrete Geometry for Computer Imagery, Vol. 6607, pp. 333–345 (2011)Google Scholar
47. 47.
Fréchet, M.: Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Mathematico di Palermo 22, 1–74 (1906)
48. 48.
Pick, G.: Geometrisches zur Zahlenlehre, Sitzungsberichte des Deutschen Naturwissenschaftlich-Medicinischen Vereines für Böhmen “Lotos” in Prag, 19, 311–319 (1899)Google Scholar
49. 49.
Klette, R., Ẑunić, J.: Multigrid convergence of calculated features in image analysis. J. Math. Imaging Vis. 13, 173–191 (2000)
50. 50.
Kovalevsky, V., Fuchs, S.: Theoretical and experimental analysis of the accuracy of perimeter estimates. In: Förster, W., Ruwiedel, S. (eds.) Robust Computer Vision, pp. 218–242 (1992)Google Scholar
51. 51.
Coeurjolly, D., Lachaud, J.-O., Roussillon, T.: Multigrid convergence of discrete geometric estimators. In Brimkov, V.E., Barneva, R.P. (eds.) Digital Geometry Algorithms, Lecture Notes in Computational Vision and Biomechanics, vol. 2 pp. 395–424 (2012)Google Scholar
52. 52.
Lachaud, J.-O., Thibert, B.: Properties of Gauss digitized shapes and digital surface integration. J. Math. Imaging Vis. 54(2), 162–180 (2016)
53. 53.
DGtal: Digital geometry tools and algorithms library. http://libdgtal.org

## Authors and Affiliations

• Phuc Ngo
• 1
• Nicolas Passat
• 2
• Yukiko Kenmochi
• 3
• Isabelle Debled-Rennesson
• 1
1. 1.Université de Lorraine, LORIAVillers-lés-NancyFrance
2. 2.Université de Reims Champagne-Ardenne, CReSTICReimsFrance
3. 3.Université Paris-Est, LIGM, CNRSMarne-la-ValléeFrance