Journal of Mathematical Imaging and Vision

, Volume 61, Issue 1, pp 21–39 | Cite as

Denoising of Image Gradients and Total Generalized Variation Denoising

  • Birgit Komander
  • Dirk A. LorenzEmail author
  • Lena Vestweber


We revisit total variation denoising and study an augmented model where we assume that an estimate of the image gradient is available. We show that this increases the image reconstruction quality and derive that the resulting model resembles the total generalized variation denoising method, thus providing a new motivation for this model. Further, we propose to use a constraint denoising model and develop a variational denoising model that is basically parameter free, i.e., all model parameters are estimated directly from the noisy image. Moreover, we use Chambolle–Pock’s primal dual method as well as the Douglas–Rachford method for the new models. For the latter one has to solve large discretizations of partial differential equations. We propose to do this in an inexact manner using the preconditioned conjugate gradients method and derive preconditioners for this. Numerical experiments show that the resulting method has good denoising properties and also that preconditioning does increase convergence speed significantly. Finally, we analyze the duality gap of different formulations of the TGV denoising problem and derive a simple stopping criterion.


Image denoising Gradient estimate Total generalized variation Douglas–Rachford method Preconditioning 


  1. 1.
    Acosta, G., Durán, R.G.: An optimal Poincaré inequality in \(L^1\) for convex domains. Proc. Am. Math. Soc. 132(1), 195–202 (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Alt, H.W: Linear functional analysis. Universitext. Springer London, Ltd., London. An application-oriented introduction, Translated from the German edition by R. Nürnberg (2016)Google Scholar
  3. 3.
    Bourgain, J., Brezis, H.: On the equation \({\text{ Y }}= f\) and application to control of phases. J. Am. Math. Soc. 16(2), 393–426 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bredies, K., Kunisch, K., Valkonen, T.: Properties of \(L^1-TGV^2\): the one-dimensional case. J. Math. Anal. Appl. 398(1), 438–454 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bredies, K., Sun, H.P.: Preconditioned Douglas–Rachford algorithms for Tv- and TGV-regularized variational imaging problems. J. Math. Imaging Vis. 52(3), 317–344 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ciarlet, P.G.: Linear and nonlinear functional analysis with applications, pp. xiv+832. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013)Google Scholar
  9. 9.
    Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6), 475–504 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jr Douglas, J., Jr Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1–3), 293–318 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ekeland, I., Temam, R.: Convex analysis and variational problems. Translated from the French, Studies in Mathematics and its Applications, vol. 1, pp. ix+402. North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York (1976)Google Scholar
  13. 13.
    Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation (TGV) for MRI. Magn. Resonan. Med. 65(2), 480–491 (2011)CrossRefGoogle Scholar
  14. 14.
    Komander, B., Lorenz, D., Fischer, M., Petz, M., Tutsch, R.: Data fusion of surface normals and point coordinates for deflectometric measurements. J. Sens. Sens. Syst. 3, 281–290 (2014)CrossRefGoogle Scholar
  15. 15.
    Komander, B., Lorenz, D.A.: Denoising of image gradients and constrained total generalized variation. In: Lauze, F., Dong, Y., Dahl, A.B. (eds) Proceedings of scale space and variational methods in computer vision: 6th international conference, SSVM 2017, Kolding, Denmark, June 4–8, 2017, pp. 435–446, Cham. Springer, Berlin (2017)Google Scholar
  16. 16.
    Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Liu, X., Tanaka, M., Okutomi, M.: Noise level estimation using weak textured patches of a single noisy image. In: 19th IEEE international conference on image processing (ICIP), 2012, pp. 665–668 (2012)Google Scholar
  18. 18.
    Liu, X., Tanaka, M., Okutomi, M.: Single-image noise level estimation for blind denoising. IEEE Trans. Image Proc. 22(12), 5226–5237 (2013)CrossRefGoogle Scholar
  19. 19.
    Lorenz, D.A., Worliczek, N.: Necessary conditions for variational regularization schemes. Inverse Prob. 29, 075016 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lysaker, M., Osher, S., Tai, X.-C.: Noise removal using smoothed normals and surface fitting. IEEE Trans. Image Proc. 13(10), 1345–1357 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mardal, K.-A., Winther, R.: Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 18(1), 1–40 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    O’Connor, D., Vandenberghe, L.: Primal-dual decomposition by operator splitting and applications to image deblurring. SIAM J. Imaging Sci. 7(3), 1724–1754 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenom. 60(1), 259–268 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Songsiri, J.: Projection onto an \(l_1\)-norm ball with application to identification of sparse autoregressive models. In: Asean symposium on automatic control. Vietnam (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Birgit Komander
    • 1
  • Dirk A. Lorenz
    • 1
    Email author
  • Lena Vestweber
    • 2
  1. 1.Institute of Analysis and AlgebraTU BraunschweigBrunswickGermany
  2. 2.Institut Computational Mathematics, AG NumerikTU BraunschweigBrunswickGermany

Personalised recommendations