Skip to main content
Log in

A Geometric Model of Multi-scale Orientation Preference Maps via Gabor Functions

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper we present a new model for the generation of orientation preference maps in the primary visual cortex (V1), considering both orientation and scale features. First we undertake to model the functional architecture of V1 by interpreting it as a principal fiber bundle over the 2-dimensional retinal plane by introducing intrinsic variables orientation and scale. The intrinsic variables constitute a fiber on each point of the retinal plane and the set of receptive profiles of simple cells is located on the fiber. Each receptive profile on the fiber is mathematically interpreted as a rotated Gabor function derived from an uncertainty principle. The visual stimulus is lifted in a 4-dimensional space, characterized by coordinate variables, position, orientation and scale, through a linear filtering of the stimulus with Gabor functions. Orientation preference maps are then obtained by mapping the orientation value found from the lifting of a noise stimulus onto the 2-dimensional retinal plane. This corresponds to a Bargmann transform in the reducible representation of the \(\text {SE}(2)=\mathbb {R}^2\times S^1\) group. A comparison will be provided with a previous model based on the Bargmann transform in the irreducible representation of the \(\text {SE}(2)\) group, outlining that the new model is more physiologically motivated. Then, we present simulation results related to the construction of the orientation preference map by using Gabor filters with different scales and compare those results to the relevant neurophysiological findings in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Barbieri, D., Citti, G., Cocci, G., Sarti, A.: A cortical-inspired geometry for contour perception and motion integration. J. Math. Imaging Vis. 49(3), 511–529 (2014)

    Article  MATH  Google Scholar 

  2. Barbieri, D., Citti, G., Sanguinetti, G., Sarti, A.: Coherent states of the euclidean group and activation regions of primary visual cortex. arXiv preprint arXiv:1111.0669 (2011)

  3. Barbieri, D., Citti, G., Sanguinetti, G., Sarti, A.: An uncertainty principle underlying the functional architecture of v1. J. Physiol. Paris 106(5), 183–193 (2012)

    Article  Google Scholar 

  4. Bargmann, V.: On a hilbert space of analytie functions and an associated integral transform. part II. A family of related function spaces application to distribution theory. Commun. Pure Appl. Math. 20(1), 1–101 (1967)

    Article  MATH  Google Scholar 

  5. Bednar, J.A., Miikkulainen, R.: Constructing visual function through prenatal and postnatal learning. Neuroconstructivism Perspect. Prospects 2, 13–37 (2004)

    Google Scholar 

  6. Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D.: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17(6), 2112–2127 (1997)

    Article  Google Scholar 

  7. Bressloff, P.C., Cowan, J.D.: The functional geometry of local and horizontal connections in a model of v1. J. Physiol. Paris 97(2), 221–236 (2003)

    Article  Google Scholar 

  8. Bressloff, P.C., Cowan, J.D.: A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358(1438), 1643–1667 (2003)

    Article  Google Scholar 

  9. Bressloff, P.C., Cowan, J.D., Golubitsky, M., Thomas, P.J., Wiener, M.C.: Geometric visual hallucinations, euclidean symmetry and the functional architecture of striate cortex. Philos. Trans. R. Soc. B Biol. Sci. 356(1407), 299–330 (2001)

    Article  Google Scholar 

  10. Cang, J., Rentería, R.C., Kaneko, M., Liu, X., Copenhagen, D.R., Stryker, M.P.: Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48(5), 797–809 (2005)

    Article  Google Scholar 

  11. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24(3), 307–326 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Citti, G., Sarti, A.: Neuromathematics of Vision. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  13. Cocci, G., Barbieri, D., Citti, G., Sarti, A.: Cortical spatiotemporal dimensionality reduction for visual grouping. Neural Comput. 27(6), 1252–1293 (2015)

    Article  Google Scholar 

  14. Das, A., Gilbert, C.D.: Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature 375(6534), 780 (1995)

    Article  Google Scholar 

  15. Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. JOSA A 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  16. Field, D., Tolhurst, D.: The structure and symmetry of simple-cell receptive-field profiles in the cat’s visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 228(1253), 379–400 (1986)

    Article  Google Scholar 

  17. Field, D.J., Hayes, A., Hess, R.F.: Contour integration by the human visual system: evidence for a local association field. Vis. Res. 33(2), 173–193 (1993)

    Article  Google Scholar 

  18. Folland, G.B.: Harmonic Analysis in Phase Space, (AM-122), vol. 122. Princeton University Press, Princeton (2016)

    Google Scholar 

  19. Gabor, D.: Theory of communication. part 1: the analysis of information. J. Inst. Electr. Eng. Part III Radio Commun. Eng. 93(26), 429–441 (1946)

    Google Scholar 

  20. Hörmander, L.: Hypoelliptic second order differential equations. Acta Mathematica 119(1), 147–171 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jegelka, S., Bednar, J.A., Miikkulainen, R.: Prenatal development of ocular dominance and orientation maps in a self-organizing model of v1. Neurocomputing 69(10), 1291–1296 (2006)

    Article  Google Scholar 

  22. Koenderink, J.J.: The structure of images. Biol. Cybern. 50(5), 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Koenderink, J.J., van Doorn, A.J.: Representation of local geometry in the visual system. Biol. Cybern. 55(6), 367–375 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 79–116 (1998)

    Article  Google Scholar 

  25. Lindeberg, T.: Generalized gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space. J. Math. Imaging Vis. 40(1), 36–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lindeberg, T.: A computational theory of visual receptive fields. Biol. Cybern. 107(6), 589–635 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Petitot, J.: The neurogeometry of pinwheels as a sub-riemannian contact structure. J. Physiol. Paris 97(2), 265–309 (2003)

    Article  Google Scholar 

  28. Petitot, J.: Neurogéométrie de la vision. Modeles mathématiques et physiques des architectures fonctionelles. Éd. École Polytech, Paris (2008)

    Google Scholar 

  29. Petitot, J., Tondut, Y.: Vers une neurogéométrie. fibrations corticales, structures de contact et contours subjectifs modaux. Mathématiques informatique et sciences humaines 145, 5–102 (1999)

    Google Scholar 

  30. Sanguinetti, G., Citti, G., Sarti, A.: A model of natural image edge co-occurrence in the rototranslation group. J. Vis. 10(14), 37–37 (2010)

    Article  Google Scholar 

  31. Sarti, A., Citti, G.: The constitution of visual perceptual units in the functional architecture of v1. J. Comput. Neurosci. 38(2), 285–300 (2015)

    Article  MathSciNet  Google Scholar 

  32. Sarti, A., Citti, G., Petitot, J.: The symplectic structure of the primary visual cortex. Biol. Cybern. 98(1), 33–48 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sarti, A., Citti, G., Petitot, J.: Functional geometry of the horizontal connectivity in the primary visual cortex. J. Physiol. Paris 103(1), 37–45 (2009)

    Article  Google Scholar 

  34. Sarti, A., Piotrowski, D.: Individuation and semiogenesis: an interplay between geometric harmonics and structural morphodynamics. In: Sarti, A., Montanari, F. & Galofaro, F. (eds.) Morphogenesis and Individuation, pp. 49–73. Springer (2015)

  35. Sharma, U., Duits, R.: Left-invariant evolutions of wavelet transforms on the similitude group. Appl. Comput. Harmon. Anal. 39(1), 110–137 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stellwagen, D., Shatz, C.: An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33(3), 357–367 (2002)

    Article  Google Scholar 

  37. Sugiura, M.: Unitary Representations and Harmonic Analysis: An Introduction, vol. 44. Elsevier, Amsterdam (1990)

    MATH  Google Scholar 

  38. Tanaka, S., Miyashita, M., Ribot, J.: Roles of visual experience and intrinsic mechanism in the activity-dependent self-organization of orientation maps: theory and experiment. Neural Netw. 17(8), 1363–1375 (2004)

    Article  Google Scholar 

  39. Wertheimer, M.: Laws of organization in perceptual forms. In: A Source Book of Gestalt Psychology. Harcourt Brace, New York (1923)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Sarti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baspinar, E., Citti, G. & Sarti, A. A Geometric Model of Multi-scale Orientation Preference Maps via Gabor Functions. J Math Imaging Vis 60, 900–912 (2018). https://doi.org/10.1007/s10851-018-0803-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0803-3

Keywords

Navigation