Advertisement

Journal of Mathematical Imaging and Vision

, Volume 60, Issue 6, pp 913–928 | Cite as

Fast Blended Transformations for Partial Shape Registration

  • Alon ShternEmail author
  • Matan Sela
  • Ron Kimmel
Article
  • 371 Downloads

Abstract

Automatic estimation of skinning transformations is a popular way to deform a single reference shape into a new pose by providing a small number of control parameters. We generalize this approach by efficiently enabling the use of multiple exemplar shapes. Using a small set of representative natural poses, we propose to express an unseen appearance by a low-dimensional linear subspace, specified by a redundant dictionary of weighted vertex positions. Minimizing a nonlinear functional that regulates the example manifold, the suggested approach supports local-rigid deformations of articulated objects, as well as nearly isometric embeddings of smooth shapes. A real-time nonrigid deformation system is demonstrated, and a shape completion and partial registration framework is introduced. These applications can recover a target pose and implicit inverse kinematics from a small number of examples and just a few vertex positions. The resulting reconstruction is more accurate compared to alternative reduced deformable models.

Keywords

Shape deformation Geometric modeling Skinning Shape correspondence 

Notes

Acknowledgements

Funding was provided by European Research Council (Grant No. 267414).

Supplementary material

Supplementary material 1 (mp4 12921 KB)

References

  1. 1.
    Alexa, M.: Differential coordinates for local mesh morphing and deformation. Vis. Comput. 19(2), 105–114 (2003)zbMATHGoogle Scholar
  2. 2.
    Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’00, pp. 157–164. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (2000).  https://doi.org/10.1145/344779.344859
  3. 3.
    Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22(3), 587–594 (2003).  https://doi.org/10.1145/882262.882311 CrossRefGoogle Scholar
  4. 4.
    Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid icp algorithms for surface registration. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR ’07, pp. 1–8 (2007).  https://doi.org/10.1109/CVPR.2007.383165
  5. 5.
    Anguelov, D., Srinivasan, P., cheung Pang, H., Koller, D., Thrun, S., Davis, J.: The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems vol. 17, pp. 33–40. MIT Press, Cambridge (2005). http://papers.nips.cc/paper/2601-the-correlated-correspondence-algorithm-for-unsupervised-registration-of-nonrigid-surfaces.pdf
  6. 6.
    Bogo, F., Romero, J., Loper, M., Black, M.J.: Faust: dataset and evaluation for 3d mesh registration. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  7. 7.
    Bouaziz, S., Martin, S., Liu, T., Kavan, L., Pauly, M.: Projective dynamics: fusing constraint projections for fast simulation. ACM Trans. Graph. 33(4), 154:1–154:11 (2014).  https://doi.org/10.1145/2601097.2601116 CrossRefzbMATHGoogle Scholar
  8. 8.
    Bouaziz, S., Wang, Y., Pauly, M.: Online modeling for realtime facial animation. ACM Trans. Graph. (TOG) 32(4), 40 (2013)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Springer, Berlin (2008)zbMATHGoogle Scholar
  10. 10.
    Brunton, A., Wand, M., Wuhrer, S., Seidel, H.P., Weinkauf, T.: A low-dimensional representation for robust partial isometric correspondences computation. Graph. Models 76(2), 70–85 (2014)CrossRefGoogle Scholar
  11. 11.
    Chao, I., Pinkall, U., Sanan, P., Schröder, P.: A simple geometric model for elastic deformations. In: ACM SIGGRAPH 2010 Papers, SIGGRAPH’10, pp. 38:1–38:6. ACM, New York, NY, USA (2010).  https://doi.org/10.1145/1833349.1778775
  12. 12.
    Der, K.G., Sumner, R.W., Popović, J.: Inverse kinematics for reduced deformable models. ACM Trans. Graph. 25(3), 1174–1179 (2006).  https://doi.org/10.1145/1141911.1142011 CrossRefGoogle Scholar
  13. 13.
    Dey, T.K., Ranjan, P., Wang, Y.: Eigen deformation of 3d models. Vis. Comput. 28(6–8), 585–595 (2012)CrossRefGoogle Scholar
  14. 14.
    Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    Feng, W.W., Kim, B.U., Yu, Y.: Real-time data driven deformation using kernel canonical correlation analysis. In: ACM SIGGRAPH 2008 Papers, SIGGRAPH’08, pp. 91:1–91:9. ACM, New York, NY, USA (2008).  https://doi.org/10.1145/1399504.1360690
  16. 16.
    Fröhlich, S., Botsch, M.: Example-driven deformations based on discrete shells. Comput. Graph. Forum 30(8), 2246–2257 (2011).  https://doi.org/10.1111/j.1467-8659.2011.01974.x CrossRefGoogle Scholar
  17. 17.
    Gao, L., Lai, Y.K., Liang, D., Chen, S.Y., Xia, S.: Efficient and flexible deformation representation for data-driven surface modeling. ACM Trans. Graph. (TOG) 35(5), 158 (2016)CrossRefGoogle Scholar
  18. 18.
    Grinspun, E., Hirani, A.N., Desbrun, M., Schröder, P.: Discrete shells. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA’03, pp. 62–67. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2003)Google Scholar
  19. 19.
    Jacobson, A., Baran, I., Kavan, L., Popović, J., Sorkine, O.: Fast automatic skinning transformations. ACM Trans. Graph. 31(4), 77:1–77:10 (2012).  https://doi.org/10.1145/2185520.2185573 CrossRefGoogle Scholar
  20. 20.
    Jacobson, A., Baran, I., Popović, J., Sorkine-Hornung, O.: Bounded biharmonic weights for real-time deformation. Commun. ACM 57(4), 99–106 (2014).  https://doi.org/10.1145/2578850 CrossRefGoogle Scholar
  21. 21.
    James, D.L., Twigg, C.D.: Skinning mesh animations. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH’05, pp. 399–407. ACM, New York, NY, USA (2005).  https://doi.org/10.1145/1186822.1073206
  22. 22.
    Kaufman, L., Rousseeuw, P.: Clustering by Means of Medoids. North-Holland, Amsterdam (1987)Google Scholar
  23. 23.
    Kavan, L., Sloan, P.P., O’Sullivan, C.: Fast and efficient skinning of animated meshes. Comput. Graph. Forum 29(2), 327–336 (2010).  https://doi.org/10.1111/j.1467-8659.2009.01602.x CrossRefGoogle Scholar
  24. 24.
    Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. In: ACM SIGGRAPH 2011 Papers, SIGGRAPH’11, pp. 79:1–79:12. ACM, New York, NY, USA (2011).  https://doi.org/10.1145/1964921.1964974
  25. 25.
    Koyama, Y., Takayama, K., Umetani, N., Igarashi, T.: Real-time example-based elastic deformation. In: Proceedings of the 11th ACM SIGGRAPH/Eurographics Conference on Computer Animation, EUROSCA’12, pp. 19–24. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2012).  https://doi.org/10.2312/SCA/SCA12/019-024
  26. 26.
    Kry, P.G., James, D.L., Pai, D.K.: Eigenskin: real time large deformation character skinning in hardware. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA’02, pp. 153–159. ACM, New York, NY, USA (2002).  https://doi.org/10.1145/545261.545286
  27. 27.
    Le, B.H., Deng, Z.: Robust and accurate skeletal rigging from mesh sequences. ACM Trans. Graph. 33(4), 84:1–84:10 (2014).  https://doi.org/10.1145/2601097.2601161 CrossRefzbMATHGoogle Scholar
  28. 28.
    Levi, Z., Gotsman, C.: Smooth rotation enhanced as-rigid-as-possible mesh animation. IEEE Trans. Vis. Comput. Graph. 21(2), 264–277 (2015)CrossRefGoogle Scholar
  29. 29.
    Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’00, pp. 165–172. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (2000).  https://doi.org/10.1145/344779.344862
  30. 30.
    Li, H., Sumner, R.W., Pauly, M.: Global correspondence optimization for non-rigid registration of depth scans. Comput. Graph. Forum 27(5), 1421–1430 (2008).  https://doi.org/10.1111/j.1467-8659.2008.01282.x CrossRefGoogle Scholar
  31. 31.
    Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rossi, C., Seidel, H.P.: Differential coordinates for interactive mesh editing. In: Shape Modeling Applications, 2004. Proceedings, pp. 181–190 (2004).  https://doi.org/10.1109/SMI.2004.1314505
  32. 32.
    Liu, L., Zhang, L., Xu, Y., Gotsman, C., Gortler, S.J.: A local/global approach to mesh parameterization. Comput. Graph. Forum 27(5), 1495–1504 (2008).  https://doi.org/10.1111/j.1467-8659.2008.01290.x CrossRefGoogle Scholar
  33. 33.
    Magnenat-thalmann, N., Laperrire, R., Thalmann, D., Montral, U.D.: Joint-dependent local deformations for hand animation and object grasping. In: Proceedings on Graphics interface vol. 88, pp. 26–33 (1988)Google Scholar
  34. 34.
    Martin, S., Thomaszewski, B., Grinspun, E., Gross, M.: Example-based elastic materials. ACM Trans. Graph. 30(4), 72:1–72:8 (2011).  https://doi.org/10.1145/2010324.1964967 CrossRefGoogle Scholar
  35. 35.
    McAdams, A., Selle, A., Tamstorf, R., Teran, J., Sifakis, E.: Computing the singular value decomposition of 3\(\times \) 3 matrices with minimal branching and elementary floating point operations. Technical Report, University of Wisconsin-Madison (2011)Google Scholar
  36. 36.
    Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993).  https://doi.org/10.1080/10586458.1993.10504266 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Rodolà, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D.: Partial functional correspondence. In: Computer Graphics Forum. Wiley Online Library (2016)Google Scholar
  38. 38.
    Schumacher, C., Thomaszewski, B., Coros, S., Martin, S., Sumner, R., Gross, M.: Efficient simulation of example-based materials. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–8. Eurographics Association (2012)Google Scholar
  39. 39.
    Sloan, P.P.J., Rose III, C.F., Cohen, M.F.: Shape by example. In: Proceedings of the 2001 Symposium on Interactive 3D Graphics, I3D’01, pp. 135–143. ACM, New York, NY, USA (2001).  https://doi.org/10.1145/364338.364382
  40. 40.
    Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing, pp. 109–116 (2007)Google Scholar
  41. 41.
    Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans. Graph. 23(3), 399–405 (2004).  https://doi.org/10.1145/1015706.1015736 CrossRefGoogle Scholar
  42. 42.
    Sumner, R.W., Zwicker, M., Gotsman, C., Popović, J.: Mesh-based inverse kinematics. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH’05, pp. 488–495. ACM, New York, NY, USA (2005).  https://doi.org/10.1145/1186822.1073218
  43. 43.
    van Kaick, O., Zhang, H., Hamarneh, G.: Bilateral maps for partial matching. In: Computer Graphics Forum, vol. 32, pp. 189–200. Wiley Online Library (2013)Google Scholar
  44. 44.
    Von-Tycowicz, C., Schulz, C., Seidel, H.P., Hildebrandt, K.: Real-time nonlinear shape interpolation. ACM Trans. Graph. 34(3), 34:1–34:10 (2015).  https://doi.org/10.1145/2729972 CrossRefzbMATHGoogle Scholar
  45. 45.
    Wang, R.Y., Pulli, K., Popović, J.: Real-time enveloping with rotational regression. ACM Trans. Graph. (2007).  https://doi.org/10.1145/1276377.1276468
  46. 46.
    Wang, Y., Jacobson, A., Barbič, J., Kavan, L.: Linear subspace design for real-time shape deformation. ACM Trans. Graph. (TOG) 34(4), 57 (2015)Google Scholar
  47. 47.
    Winkler, T., Drieseberg, J., Alexa, M., Hormann, K.: Multi-scale geometry interpolation. Comput. Graph. Forum 29(2), 309–318 (2010).  https://doi.org/10.1111/j.1467-8659.2009.01600.x CrossRefGoogle Scholar
  48. 48.
    Xu, D., Zhang, H., Wang, Q., Bao, H.: Poisson shape interpolation. Graph. Models 68(3), 268–281 (2006)CrossRefzbMATHGoogle Scholar
  49. 49.
    Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., Van Kaick, O., Tagliasacchi, A.: Deformation-driven shape correspondence. Comput. Graph. Forum 27(5), 1431–1439 (2008).  https://doi.org/10.1111/j.1467-8659.2008.01283.x CrossRefGoogle Scholar
  50. 50.
    Zhang, W., Zheng, J., Thalmann, N.M.: Real-time subspace integration for example-based elastic material. In: Computer Graphics Forum, vol. 34, pp. 395–404. Wiley Online Library (2015)Google Scholar
  51. 51.
    Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Technion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations