Journal of Mathematical Imaging and Vision

, Volume 60, Issue 3, pp 285–303 | Cite as

Fast Recursive Computation of Krawtchouk Polynomials

  • Sadiq H. Abdulhussain
  • Abd Rahman Ramli
  • Syed Abdul Rahman Al-Haddad
  • Basheera M. Mahmmod
  • Wissam A. Jassim


Krawtchouk polynomials (KPs) and their moments are used widely in the field of signal processing for their superior discriminatory properties. This study proposes a new fast recursive algorithm to compute Krawtchouk polynomial coefficients (KPCs). This algorithm is based on the symmetry property of KPCs along the primary and secondary diagonals of the polynomial array. The \(n-x\) plane of the KP array is partitioned into four triangles, which are symmetrical across the primary and secondary diagonals. The proposed algorithm computes the KPCs for only one triangle (partition), while the coefficients of the other three triangles (partitions) can be computed using the derived symmetry properties of the KP. Therefore, only N / 4 recursion times are required. The proposed algorithm can also be used to compute polynomial coefficients for different values of the parameter p in interval (0, 1). The performance of the proposed algorithm is compared with that in previous literature in terms of image reconstruction error, polynomial size, and computation cost. Moreover, the proposed algorithm is applied in a face recognition system to determine the impact of parameter p on feature extraction ability. Simulation results show that the proposed algorithm has a remarkable advantage over other existing algorithms for a wide range of parameters p and polynomial size N, especially in reducing the computation time and the number of operations utilized.


Krawtchouk polynomial Krawtchouk moments Orthogonal polynomials Signal processing Propagation error 


  1. 1.
    Lau, T.S.: Theory of canonical moments and its applications in polynomial regression—part I. Purdue University Technical Reports, pp. 1–73 (1983)Google Scholar
  2. 2.
    Sadjang, P.N., Koepf, W., Foupouagnigni, M.: On moments of classical orthogonal polynomials. J. Math. Anal. Appl. 424(1), 122–151 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Jassim, W.A., Raveendran, P., Mukundan, R.: New orthogonal polynomials for speech signal and image processing. IET Signal Process. 6(8), 713–723 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alt, F.L.: Digital pattern recognition by moments. J. ACM 9(2), 240–258 (1962)CrossRefzbMATHGoogle Scholar
  5. 5.
    Jassim, W.A., Raveendran, P.: Face recognition using discrete Tchebichef–Krawtchouk transform. In: 2012 IEEE International Symposium on Multimedia (ISM), pp. 120–127 (2012)Google Scholar
  6. 6.
    Jassim, W.A., Paramesran, R., Zilany, M.S.A.: Enhancing noisy speech signals using orthogonal moments. IET Signal Process. 8(8), 891–905 (2014)CrossRefGoogle Scholar
  7. 7.
    Yap, P.-T., Paramesran, R.: Local watermarks based on Krawtchouk moments. In: TENCON 2004. 2004 IEEE Region 10 Conference, pp. 73–76 (2004)Google Scholar
  8. 8.
    Rivero-Castillo, D., Pijeira, H., Assunçao, P.: Edge detection based on Krawtchouk polynomials. J. Comput. Appl. Math. 284, 244–250 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Abdulhussain, S.H., Ramli, A.R., Mahmmod, B.M., Al-Haddad, S.A.R., Jassim, W.A.: Image edge detection operators based on orthogonal polynomials. Int. J. Image Data Fusion 8(3), 293–308 (2017)Google Scholar
  10. 10.
    Teague, M.R.: Image analysis via the general theory of moments. JOSA 70(8), 920–930 (1980)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yap, P.-T., Paramesran, R., Ong, S.-H.: Image analysis using Hahn moments. Pattern Anal. Mach. Intell. IEEE Trans. 29(11), 2057–2062 (2007)CrossRefGoogle Scholar
  12. 12.
    Abdulhussain, S.H., Ramli, A.R., Al-Haddad, S.A.R., Mahmmod, B.M., Jassim, W.A.: On computational aspects of Tchebichef polynomials for higher polynomial order. IEEE Access 5, 2470–2478 (2017)CrossRefGoogle Scholar
  13. 13.
    Mukundan, R., Ong, S.H., Lee, P.A.: Image analysis by Tchebichef moments. Image Process. IEEE Trans. 10(9), 1357–1364 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yap, P.-T., Paramesran, R., Ong, S.-H.: Image analysis by Krawtchouk moments. Image Process. IEEE Trans. 12(11), 1367–1377 (2003)Google Scholar
  15. 15.
    Nikiforov, A.F., Uvarov, V.B., Suslov, S.K.: Classical orthogonal polynomials of a discrete variable. In: Fletcher, C.A.J., Glowinski, R., Hillebrandt, W., Holt, M., Hut, P., Keller, H.B., Killeen, J., Orszag, S.A., Rusanov, V.V. (eds.) Classical Orthogonal Polynomials of a Discrete Variable, pp. 18–54. Springer-Verlag, Berlin, Heidelberg (1991)Google Scholar
  16. 16.
    Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    Yap, P.T., Raveendran, P., Ong, S.H.: Krawtchouk moments as a new set of discrete orthogonal moments for image reconstruction. In: Proceedings of the 2002 International Joint Conference on Neural Networks (IJCNN ’02), vol. 1, pp. 908–912 (2002). doi: 10.1109/IJCNN.2002.1005595
  18. 18.
    Zhang, G., Luo, Z., Fu, B., Li, B., Liao, J., Fan, X., Xi, Z.: A symmetry and bi-recursive algorithm of accurately computing Krawtchouk moments. Pattern Recognit. Lett. 31(7), 548–554 (2010)CrossRefGoogle Scholar
  19. 19.
    Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and their q-Analogues. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Foncannon, J.J.: Irresistible integrals: symbolics, analysis and experiments in the evaluation of integrals. Math. Intell. 28(3), 65–68 (2006)CrossRefGoogle Scholar
  21. 21.
    Thung, K.-H., Paramesran, R., Lim, C.-L.: Content-based image quality metric using similarity measure of moment vectors. Pattern Recognit. 45(6), 2193–2204 (2012)CrossRefzbMATHGoogle Scholar
  22. 22.
    Zhu, H., Liu, M., Shu, H., Zhang, H., Luo, L.: General form for obtaining discrete orthogonal moments. IET Image Process. 4(5), 335–352 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1964)Google Scholar
  24. 24.
    Chihara, L., Stanton, D.: Zeros of generalized Krawtchouk polynomials. J. Approx. Theory 60(1), 43–57 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Fienup, J.R.: Invariant error metrics for image reconstruction. Appl. Opt. 36(32), 8352–8357 (1997)CrossRefGoogle Scholar
  26. 26.
    AT&T Corp: The database of faces (2016). Accessed 01 Jan 2016
  27. 27.
    Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)CrossRefGoogle Scholar
  28. 28.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sadiq H. Abdulhussain
    • 1
    • 3
  • Abd Rahman Ramli
    • 1
  • Syed Abdul Rahman Al-Haddad
    • 1
    • 3
  • Basheera M. Mahmmod
    • 1
  • Wissam A. Jassim
    • 2
    • 4
  1. 1.Department of Computer and Communication Systems EngineeringUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Sigmedia, ADAPT Center, Department of Electronic and Electrical EngineeringTrinity College DublinDublin 2Ireland
  3. 3.Computer Engineering DepartmentUniversity of BaghdadBaghdadIraq
  4. 4.ADAPT Center, School of Engineering, Trinity College DublinUniversity of DublinDublin 2Ireland

Personalised recommendations