Journal of Mathematical Imaging and Vision

, Volume 59, Issue 2, pp 318–340 | Cite as

Overview of Shelling for 2-Manifold Surface Reconstruction Based on 3D Delaunay Triangulation

  • Maxime LhuillierEmail author


Recently, methods have been proposed to reconstruct a 2-manifold surface from a sparse cloud of points estimated from an image sequence. Once a 3D Delaunay triangulation is computed from the points, the surface is searched by growing a set of tetrahedra whose boundary is maintained 2-manifold. Shelling is a step that adds one tetrahedron at once to the growing set. This paper surveys properties that helps to understand the shelling performances: shelling provides most tetrahedra enclosed by the final surface, but it can “get stuck” or block in unexpected cases.


Reconstruction Volumetric models Shellability 3D Delaunay triangulation Star shapes 

Supplementary material

10851_2017_734_MOESM1_ESM.pdf (142 kb)
Supplementary material 1 (pdf 143 KB)


  1. 1.
    Boissonnat, J.D.: Geometric structures for three-dimensional shape representation. ACM Trans. Graph. 3(4), 266–286 (1984)Google Scholar
  2. 2.
    Boissonnat, J.D., Devillers, O., Pion, S., Teillaud, M., Yvinec, M.: Triangulations in CGAL. Comput. Geom. Theory Appl. 22, 5–19 (2002)Google Scholar
  3. 3.
    Bruggesser, H., Mani, P.: Shellable decomposition of cells and spheres. Math. Scand. 29, 197–205 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Danaraj, G., Klee, V.: A representation of 2-dimensional pseudomanifolds and its use in the design of a linear-time shelling algorithm. Algorithmic aspects of combinatorics. Ann. Discrete Math. 2, 53–63 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    DeRose, T., Duchamp, T., Hoppe, H., McDonald, J.A., Stuetzle, W: Reconstructing two-dimensional manifolds from scattered data: motivations and background. Technical report 215, University of Washington (1991)Google Scholar
  6. 6.
    Diestel, R.: Graph Theory. Graduated Texts in Mathematics. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Edelsbrunner, H.: An acyclicity theorem for cell complexes in d dimensions. Combinatorica 10(3), 251–260 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gallier, J.: Notes on convex sets, polytopes, polyhedra, combinatorial topology, voronoi diagrams and Delaunay triangulation. Research report RR-6379, INRIA (2007)Google Scholar
  10. 10.
    Gezahegne, A.: Surface reconstruction with constrained sculpting. Master of science thesis, University of California (2005)Google Scholar
  11. 11.
    Giblin, P.: Graphs, Surfaces and Homology, 3rd edn. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hachimori, M.: Combinatorics of constructible complexes. PhD. Thesis, University of Tokyo (2000)Google Scholar
  13. 13.
    Lhuillier, M., Yu, S.: Manifold surface reconstruction of an environment from sparse structure-from-motion data. CVIU 117(11), 1628–1644 (2013)Google Scholar
  14. 14.
    Lhuillier, M.: 2-manifold tests for 3D Delaunay triangulation-based surface reconstruction. J. Math. Imaging Vis. 51(1), 98–105 (2015)Google Scholar
  15. 15.
    Litvinov, V., Lhuillier, M.: Incremental solid modeling from sparse and omnidirectional structure-from-motion data. British Machine Vision Conference, Bristol (2013)Google Scholar
  16. 16.
    Litvinov, V., Lhuillier, M.: Incremental solid modeling from sparse structure-from-motion data with improved visual artifacts removal. International Conference on Pattern Recognition, Stockholm (2014)Google Scholar
  17. 17.
    Lutz, F.H.: Combinatorial 3-manifold with 10 vertices. Beitrage zur Algebra und Geometrie 49(1), 97–106 (2008)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Romanoni A., Matteucci M.: Incremental reconstruction of urban environments by edge-point Delaunay triangulation. International Conference on Intelligent Robots and Systems, Hamburg (2015)Google Scholar
  19. 19.
    Sakai, K.: Simplicial Homology: A Short Course. Institute of Mathematics, University of Tsukuba, Tsukuba (2010)Google Scholar
  20. 20.
    Varadhan G., Krishnan S., Sriram TVN., Manocha D.: Topology preserving surface extraction using adaptive subdivision. In: Eurographics Symposium on Geometry Processing (2004)Google Scholar
  21. 21.
    Vegter, G.: Computational topology. In: GoodMan, J., Rourke, J.O. (eds.) Handbook of Discrete and Computational Geometry. CRS Press, Boca Raton (2004)Google Scholar
  22. 22.
    Xia, J., He, Y., Han, S., Fu, C.W., Luo, F., Gu, X.: Parameterization of a star-shaped volumes using green’s functions. Lect. Notes Comput. Sci. 6130, 219–235 (2010)CrossRefGoogle Scholar
  23. 23.
    Yu S., Lhuillier M.: Incremental reconstruction of a manifold surface from sparse visual mapping. Joint 3DIM/3DPVT conference: 3D Imaging-Modeling-Processing-Visualization-Transmission, Zurich (2012)Google Scholar
  24. 24.
    Ziegler, G.M.: Shelling polyhedral 3-balls and 4-polytopes. Discrete Comput. Geom. 19, 159–174 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ziegler, G.M.: Lectures on Polytope. Graduate Texts in Mathematics. Springer, Berlin (2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.UMR 6602 CNRS/UCA/SIGMAInstitut PascalAubière CedexFrance

Personalised recommendations