Advertisement

Journal of Mathematical Imaging and Vision

, Volume 58, Issue 3, pp 349–381 | Cite as

Spherical Tensor Algebra: A Toolkit for 3D Image Processing

  • Henrik Skibbe
  • Marco Reisert
Article

Abstract

With the advent of novel 3D image acquisition techniques, their efficient and reliable analysis becomes more and more important. In particular in 3D, the amount of data is enormous and requires for an automated processing. The tasks are manifold, starting from simple image enhancement, image reconstruction, image description and object/feature detection to high-level contextual feature extraction. One important property that most of these tasks have in common is their covariance to rotations. Spherical Tensor Algebra (STA) offers a general framework to fulfill these demands. STA transfers theories from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. The main objects of interest are orientation fields. The interpretations of the fields are manifold. Depending on the application, they can represent local image descriptors, features, orientation scores or filter responses. STA deals with the processing of such fields in the domain of the irreducible representations of the rotation group. Two operations are fundamental: the extraction/projection of the features by convolution-like procedures and the nonlinear covariant combination by spherical products. In this paper, we propose an open-source toolbox that implements, in addition to fundamental STA operators, advanced functions for feature detection and image enhancement and makes them accessible to the 3D image processing community. The core features are implemented in C (CPU and GPU) with APIs in C++ and MATLAB. As examples, we show applications for medical and biological images.

Keywords

Biomedical 3D image processing Rotational invariance Spherical tensors 3D feature detection Bi-spectrum 

Notes

Acknowledgements

This research was supported by the program for Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) from Japan Agency for Medical Research and development, AMED. This study was supported by Deutsche Forschungsgemeinschaft (German Research Council) via grants DFG RE 3286/2-1 and DFG KI 1089/3-2. We would like to thank Professor Kei Ito from the Department of Computational Biology, The University of Tokyo, for providing us the image of neurite structures in a drosophila fly brain; Fig. 22.

Supplementary material

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Ninth Dover printing, tenth gpo printing edn. Dover, New York (1964)MATHGoogle Scholar
  2. 2.
    Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magn. Reson. Med. 64, 554–566 (2010)Google Scholar
  3. 3.
    Aguet, F., Jacob, M,. Unser, M.: Three-dimensional feature detection using optimal steerable filters. In: Proceedings of the ICIP, vol. II, pp. 1158–1161, Genova, Italy. IEEE (2005)Google Scholar
  4. 4.
    Allaire, S., Kim, J.J., Breen, S.L., Jaffray, D.A., Pekar, V.: Full orientation invariance and improved feature selectivity of 3D SIFT with application to medical image analysis. In: Proceedings of the MMBIA, pp. 1–8 (2008)Google Scholar
  5. 5.
    Antiga, L.: Generalizing vesselness with respect to dimensionality and shape. Insight J. 3 (2007)Google Scholar
  6. 6.
    Applequist, J.: Traceless cartesian tensor forms for spherical harmonic functions: new theorems and applications to electrostatics of dielectric media. J. Phys. A Math. Gen. 22(20), 4303 (1989)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, Sixth Edition: A Comprehensive Guide, 6th edn. Academic Press, London (2005)Google Scholar
  8. 8.
    Ballard, Dana H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 13(2), 111–122 (1981)CrossRefMATHGoogle Scholar
  9. 9.
    Barmpoutis, A., Hwang, M.S., Howland, D., Forder, J.R., Vemuri, B.C.: Regularized positive-definite fourth order tensor field estimation from dw-mri. NeuroImage 45(1 supplement 1), S153–S162 (2009). (mathematics in brain imaging)CrossRefGoogle Scholar
  10. 10.
    Barmpoutis, A., Vemuri, B.C., Howland, D., Forder, J.R.: Extracting tractosemas from a displacement probability field for tractography in DW-MRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2008, vol. 11, pp. 9–16. Springer (LNCS), New York, NY, USA (2008)Google Scholar
  11. 11.
    Barnett, A.: Theory of q-ball imaging redux: implications for fiber tracking. Magn. Reson. Med. 62, 910–923 (2009)CrossRefGoogle Scholar
  12. 12.
    Bigun, J.,  Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proceedings of the ICCV, pp. 433–438, London. IEEE (1987)Google Scholar
  13. 13.
    Bovik, A.C., Clark, M., Geisler, W.S.: Multichannel texture analysis using localized spatial filters. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 55–73 (1990)CrossRefGoogle Scholar
  14. 14.
    Breiman, Leo: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefMATHGoogle Scholar
  15. 15.
    Brink, D .M., Satchler, G .R.: Angular Momentum. Oxford Science Publications, Oxford (1993)MATHGoogle Scholar
  16. 16.
    Buhmann, J., Lange, J., von der Malsburg, C.: Distortion invariant object recognition by matching hierarchically labeled graphs. In: Proceedings of the IJCNN, the International Joint Conference on Neural Networks, pp. 155–159. IEEE (1989)Google Scholar
  17. 17.
    Burgeth, B., Didas, S., Weickert, J.: A General Structure Tensor Concept and Coherence-Enhancing Diffusion Filtering for Matrix Fields, pp. 305–323. Springer, Berlin (2009)MATHGoogle Scholar
  18. 18.
    Canales-Rodriguez, E.J., Melie-Garcia, L., Iturria-Medina, Y.: Mathematical description of q-space in spherical coordinates: exact Q-ball imaging. Magn. Reson. Med. 61, 1350–1367 (2009)CrossRefGoogle Scholar
  19. 19.
    Caruyer, E., Daducci, A., Descoteaux, M., Houde, J., Thiran, J., Verma, R.: Phantomas: a flexible software library to simulate diffusion MR phantoms. In: ISMRM. Milan, Italy. https://hal.inria.fr/hal-00944644 (2014)
  20. 20.
    Cheung, W., Hamarneh, G.: N-SIFT: n-dimensional scale invariant feature transform for matching medical images. In: Proceedings of the ISBI, pp. 720–723, Washington, DC. IEEE (2007)Google Scholar
  21. 21.
    Cheung, W., Hamarneh, G.: Scale invariant feature transform for n-dimensional images (n-SIFT). Insight J. (2007)Google Scholar
  22. 22.
    Chirikjian, Gregory S., Kyatkin, Alexander B.: An operational calculus for the Euclidean motion group with applications in robotics and polymer science. J. Fourier Anal. Appl. 6(6), 583–606 (2000)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Chirikjian, G.S., Wang, Y.: Engineering Applications of the Motion-Group Fourier Transform. MSRI Publications, Berkeley, CA, USA (2003)Google Scholar
  24. 24.
    Choorat, P., Chiracharit, W., Chamnongthai, K.: A single tooth segmentation using structural orientations and statistical textures. In: Proceedings of the Biomedical Engineering International Conference (BMEiCON), 2011, pp. 294–297. IEEE (2012)Google Scholar
  25. 25.
    Di Claudio, E.D., Jacovitti, G., Laurenti, A.A.: Maximum likelihood orientation estimation of 1-D patterns in Laguerre-Gauss subspaces. IEEE Trans. Image Process. 19, 1113–1125 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the CVPR, pp. 886–893. IEEE (2005)Google Scholar
  27. 27.
    Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A Opt Image Sci Vis. 2(7), 1160–1169 (1985)CrossRefGoogle Scholar
  28. 28.
    Delputte, S., Dierckx, H., Fieremans, E., D’Asseler, Y., Achten, E., Lemahieu, I.: Postprocessing of brain white matter fiber orientation distribution functions. In: ISBI’07, pp. 784–787 (2007)Google Scholar
  29. 29.
    Duits, R., Franken, E.: Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of HARDI images. Int. J. Comput. Vis. 92, 231–264 (2011)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Duits, R., Franken, E.M.: Line enhancement and completion via left-invariant scale spaces on SE(2). In: Lecture Notesof Computer Science, Proceedings 2nd International Conference on Scale Space and Variational Methods in Computer Vision, vol. 5567, pp. 795–807 (2009)Google Scholar
  31. 31.
    Duits, R. Franken, E.M.:Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, part i: Linear left-invariant diffusion equations on SE(2), part ii: nonlinear left-invariant diffusion equations on invertible orientation scores. Q. Appl. Math. AMS. 68(2), 255–292 (2010)Google Scholar
  32. 32.
    Duits, R., Führ, H., Janssen, B., Bruurmijn, M., Florack, L., van Assen, H.: Evolution equations on Gabor transforms and their applications. Appl. Comput. Harmon. Anal. 35(3), 483–526 (2013)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Duits, R., Haije T.C.J.D., Ghosh, A., Creusen, E., Vilanova, A., ter Haar Romeny, B.: Fiber enhancement in diffusion-weighted MRI. In: Scale Space and Variational Methods in Computer Vision, pp 1–13. Springer (2011)Google Scholar
  34. 34.
    Fehr, J.: Local rotation invariant patch descriptors for 3D vector fields. In: Proceedings of the ICPR, pp. 1381–1384. IEEE, Istanbul, Turkey (2010)Google Scholar
  35. 35.
    Fehr, J., Burkhardt, H.: Phase based 3D texture features. In: Proceedings of the DAGM, pp. 263–272, Berlin, Germany. LNCS, Springer (2006)Google Scholar
  36. 36.
    Fehr, J.,  Burkhardt, H.: Harmonic shape histograms for 3D shape classification and retrieval. In: IAPR Workshop on Machine Vision Applications (MVA2007). IEEE Computer Society (2007)Google Scholar
  37. 37.
    Fehr, J., Reisert, M., Burkhardt, H.: Cross-correlation and rotation estimation of local 3D vector field patches. In: Proceedings of the 5th International Symposium on Advances in Visual Computing: part I, ISVC ’09, pp. 287–296. Springer (2009)Google Scholar
  38. 38.
    Flitton, G., Breckon, T.P., Megherbi, N.,  Cranfield, UK.: Object recognition using 3D SIFT in complex CT volumes. In: Proceedings of the BMVC, pp. 11–1, Aberystwyth, UK, BMVA (2010)Google Scholar
  39. 39.
    Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: General intensity transformations and second order invariants. In: Theory and Applications of Image Analysis: Selected Papers from the 7th Scandinavian Conference on Image Analysis, vol. 2, p. 22. World Scientific Publishing Company Incorporated (1992)Google Scholar
  40. 40.
    Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: General intensity transformations and differential invariants. J. Math. Imaging Vis. 4(2), 171–187 (1994)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Förstner, W.: A feature based correspondence algorithm for image matching. Int. Arch. Photogramm. Remote Sens. 26(3), 150–166 (1986)Google Scholar
  42. 42.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M. A.: Multiscale vessel enhancement filtering. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 130–137. Springer (1998)Google Scholar
  43. 43.
    Franken, Erik, Duits, Remco: Crossing-preserving coherence-enhancing diffusion on invertible orientation scores. Int. J. Comput. Vis. 85(3), 253–278 (2009)CrossRefGoogle Scholar
  44. 44.
    Franken, E, Duits, R.: Scale spaces on the 3D euclidean motion group for enhancement of HARDI data. In: Scale Space and Variational Methods in Computer Vision, pp. 820–831. Springer (2009)Google Scholar
  45. 45.
    Franken, E., van Almsick, M., Rongen, P., Florack, L., ter Haar Romeny, B.:. An efficient method for tensor voting using steerable filters. In: Proceedings of the ECCV 2006, pp. 228–240. Lecture Notes in Computer Science, Springer (2006)Google Scholar
  46. 46.
    Fuster, A., van de Sande, J., Astola, L.J., Poupon, C., Velterop, J., ter Haar Romeny, B.M.: Fourth-order tensor invariants in high angular resolution diffusion imaging. In: Proceedings of the Workshop on Computational Diffusion MRI (CDMRI’11), part of the MICCAI 2011, Toronto, Canada (2011)Google Scholar
  47. 47.
    Gabor, D.: Theory of communication. J. Inst. Elect. Eng. 93, 429–441 (1846)Google Scholar
  48. 48.
    Ghosh, A., Papadopoulo, T., Deriche, R.: Biomarkers for HARDI: 2nd & 4th order tensor invariants. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 26–29. IEEE (2012)Google Scholar
  49. 49.
    Goh, A., Lenglet, C., Thompson, P.M., Vidal, R.: Estimating orientation distribution functions with probability density constraints and spatial regularity. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2009, pp. 877–885. Lecture Notes in Computer Science. Springer, Berlin (2009)Google Scholar
  50. 50.
    González, G., Aguet, F., Fleuret, F., Unser, M., Fua, P.: Steerable features for statistical 3D dendrite detection. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 625–632. Springer (2009)Google Scholar
  51. 51.
    Gur, Y., Johnson, C. R.: Generalized HARDI invariants by method of tensor contraction. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 718–721. IEEE (2014)Google Scholar
  52. 52.
    Harris, C.,  Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, p. 50. Manchester, UK (1988)Google Scholar
  53. 53.
    Hoang, T.V.: Représentations d’images pour la reconnaissance de formes. Ph.D. thesis, Université Nancy II (2011)Google Scholar
  54. 54.
    Hoang, T.V., Tabbone, S.: Generic polar harmonic transforms for invariant image description. In: Proceedings of the ICIP, pp. 829–832, Brussels, Belgium, IEEE (2011)Google Scholar
  55. 55.
    Hsu, Y.N., Arsenault, H.H., April, G.: Rotation-invariant digital pattern recognition using circular harmonic expansion. Appl. Opt. 21(22), 4012–4015 (1982)CrossRefGoogle Scholar
  56. 56.
    Hu, P., Zhao, Y., Yang, Z., Wang, J.: Recognition of gray character using Gabor filters. In: Proceedings of the Fifth International Conference on Information Fusion, 2002, vol. 1, pp. 419–424. IEEE (2002)Google Scholar
  57. 57.
    Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 14–19 (1990)Google Scholar
  58. 58.
    Jones, Derek K (ed.): Diffusion MRI: Theory, Methods and Applications. Oxford University Press, Oxford (2010)Google Scholar
  59. 59.
    Kainz, B., Keraudren, K., Kyriakopoulou, V., Rutherford, M., Hajnal, J.V, Rueckert, D.: Fast fully automatic brain detection in fetal MRI using dense rotation invariant image descriptors. In: Proceedings of the ISBI, pp. 1230–1233. IEEE (2014)Google Scholar
  60. 60.
    Kainz, B., Malamateniou, C., Murgasova, M., Keraudren, K., Rutherford, M., Hajnal, J.V, Rueckert, D.: Motion corrected 3D reconstruction of the fetal thorax from prenatal MRI. In: Proceedings of the MICCAI, pp. 284–291. Springer (2014)Google Scholar
  61. 61.
    Kakarala, R.: The bispectrum as a source of phase-sensitive invariants for Fourier descriptors: a group-theoretic approach. J. Math. Imaging Vis. 44(3), 341–353 (2012)Google Scholar
  62. 62.
    Kakarala, Ramakrishna, Mao, Dansheng.: A theory of phase-sensitive rotation invariance with spherical harmonic and moment-based representations. In: Proceedings of the CVPR, pp. 105–112. IEEE (2010)Google Scholar
  63. 63.
    Kamarainen, J.K., Kyrki, V., Kalviainen, H.: Noise tolerant object recognition using Gabor filtering. In: Proceedings of the DSP 2002, the 14th International Conference on Digital Signal Processing, vol. 2, pp. 1349–1352. IEEE (2002)Google Scholar
  64. 64.
    Khotanzad, A., Hong, Y.H.: Invariant image recognition by Zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 489–497 (1990)CrossRefGoogle Scholar
  65. 65.
    Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough transform and 3D SURF for robust three dimensional classification. In: Proceedings of the ECCV, Crete, Greece, Springer (2010)Google Scholar
  66. 66.
    Koenderink, J.J., van Doorn, A.J.: Representation of local geometry in the visual system. Biol. Cybernet. 55, 367–375 (1987)MathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    Koenderink, J.J., van Doorn, A.J.: Generic neighborhood operators. IEEE Trans. Pattern Anal. Mach. Intell. 14(6), 597–605 (1992)CrossRefGoogle Scholar
  68. 68.
    Krainov, V.P., Reiss, H.R., Smirnov, B.M.: Appendix D: Wigner 6j Symbols, in Radiative Processes in Atomic Physics. Radiative Processes in Atomic Physics. John Wiley & Sons, Inc., New York, NY (2005)Google Scholar
  69. 69.
    Kyrki, V., Kamarainen, J.K., Kälviäinen, H.: Simple Gabor feature space for invariant object recognition. Pattern Recogn. Lett. 25(3), 311–318 (2004)CrossRefGoogle Scholar
  70. 70.
    Liu, K., Skibbe, H., Schmidt, T., Blein, T., Palme, K., Brox, T., Ronneberger, O.: Rotation-invariant HOG descriptors using Fourier analysis in polar and spherical coordinates. Int. J. Comput. Vis. 106(3), 342–364 (2014)MathSciNetCrossRefMATHGoogle Scholar
  71. 71.
    Liu, K., Wang, Q., Driever, W., Ronneberger, O.: 2D/3D rotation-invariant detection using equivariant filters and kernel weighted mapping. In: Proceedings of the CVPR, IEEE (2012)Google Scholar
  72. 72.
    Mirzaalian, H., Ning, L., Savadjiev, P., Pasternak, O., Bouix, S., Michailovich, O., Grant, G., Marx, C.E., Morey, R.A., Flashman, L.A., et al.: Inter-site and inter-scanner diffusion MRI data harmonization. NeuroImage 135, 311–323 (2016)CrossRefGoogle Scholar
  73. 73.
    Niemeijer, M., Garvin, M.K., K. Lee, B. van Ginneken, Abràmoff, M.D., Sonka, M.: Registration of 3D spectral OCT volumes using 3D SIFT feature point matching. In: Proceedings of the SPIE, vol. 7259, p. 72591I (2009)Google Scholar
  74. 74.
    Olowoyeye, A., Tuceryan, M., Fang, S.: Medical volume segmentation using bank of Gabor filters. In: Proceedings of the ACM Symposium on Applied Computing, pp. 826–829. ACM (2009)Google Scholar
  75. 75.
    Osada, K., Furuya, T., Ohbuchi, R.: SHREC08 entry: local volumetric features for 3D model retrieval. In: Proceedings of the Shape Modeling and Applications, SMI, pp. 245–246, New York, USA, IEEE (2008)Google Scholar
  76. 76.
    Paganelli, C., Peroni, M., Pennati, F., Baroni, G., Summers, P., Bellomi, M., Riboldi, M.: Scale invariant feature transform as feature tracking method in 4D imaging: a feasibility study. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pp. 6543–6546. IEEE (2012)Google Scholar
  77. 77.
    Qian, Z., Metaxas, D., Axel, L.: Extraction and tracking of MRI tagging sheets using a 3D Gabor filter bank. In: Proceedings of the IEEE Eng Medicine Biology Society, vol. 1 (2006)Google Scholar
  78. 78.
    Racah, Giulio: Theory of complex spectra. ii. Phys. Rev. 62, 438–462 (1942)CrossRefGoogle Scholar
  79. 79.
    Reisert, M., Burkhardt, H.: Complex derivative filters. IEEE Trans. Image Process. 17(12), 2265–2274 (2008)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Reisert, M., Burkhardt, H.: Equivariant holomorphic filters for contour denoising and rapid object detection. IEEE Trans. Image Process. 17(2), 190–203 (2008)MathSciNetCrossRefGoogle Scholar
  81. 81.
    Reisert, M., Burkhardt, H.: Harmonic filters for generic feature detection in 3D. In: Proceedings of the DAGM, pp. 131–140, Jena, Germany, LNCS. Springer (2009)Google Scholar
  82. 82.
    Reisert, M., Burkhardt, H.: Spherical tensor calculus for local adaptive filtering. In: Aja-Fernández, S., de Luis García, R., Tao, D., Li, X. (eds.) Tensors in Image Processing and Computer Vision, Advances in Pattern Recognition, pp. 153–178. Springer, Berlin (2009)CrossRefGoogle Scholar
  83. 83.
    Reisert, M., Kellner, E., Kiselev, V.G.: About the geometry of asymmetric fiber orientation distributions. IEEE Trans. Med. Imaging 31(6), 1240–1249 (2012)CrossRefGoogle Scholar
  84. 84.
    Reisert, M., Kiselev, V.G.: Fiber continuity: an anisotropic prior for ODF estimation. IEEE Trans Med Imaging 30(6), 1274–1283 (2011)CrossRefGoogle Scholar
  85. 85.
    Reisert, M., Mader, I., Anastosoulus, C., Weigel, M., Schnell, S., Kiselev, V.: Global fiber reconstruction becomes practical. Neuroimage 54(2), 955–962 (2010)CrossRefGoogle Scholar
  86. 86.
    Reisert, M., Skibbe, H.: Steerable deconvolution feature detection as an inverse problem. In: Mester, R., Felsberg, M. (eds.) Pattern Recognition, pp. 326–335. Springer (LNCS), Frankfurt/Main, Germany (2011)Google Scholar
  87. 87.
    Reisert, M., Skibbe, H.: Left-invariant diffusion on the motion group in terms of the irreducible representations of SO(3). arXiv:submit/0423757 [math.AP] (2012)
  88. 88.
    Rose, M.: Elementary Theory of Angular Momentum. Dover Publications, Mineola (1995)MATHGoogle Scholar
  89. 89.
    Sandler, R., Lindenbaum, M.: Optimizing Gabor filter design for texture edge detection and classification. Int. J. Comput. Vis. 84(3), 308–324 (2009)CrossRefGoogle Scholar
  90. 90.
    Savadjiev, P., Campbell, J.S.W., Pike, G.B., Siddiqi, K.: 3D curve inference for diffusion mri regularization and fibre tractography. Med. Image Anal. 10, 799–813 (2006)CrossRefGoogle Scholar
  91. 91.
    Schlachter, M., Reisert, M., Herz, C., Schluermann, F., Lassmann, S., Werner, M., Burkhardt, H., Ronneberger, O.: Harmonic filters for 3D multi-channel data: rotation invariant detection of mitoses in colorectal cancer. IEEE Trans. Med. Imaging 29(8), 1485–1495 (2010)CrossRefGoogle Scholar
  92. 92.
    Schmid, Cordelia, Mohr, Roger: Local grayvalue invariants for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 19, 530–535 (1997)CrossRefGoogle Scholar
  93. 93.
    Schmidt, T., Pasternak, T., Liu, K., Blein, T., Aubry-Hivet, D., Dovzhenko, A., Duerr, J., Teale, W., Ditengou, F.A., Burkhardt, H., et al.: The iRoCS Toolbox-3D analysis of the plant root apical meristem at cellular resolution. Plant J. 77(5), 806–814 (2014)CrossRefGoogle Scholar
  94. 94.
    Schnell, S., Saur, D., Kreher, B.W., Hennig, J., Burkhardt, H., Kiselev, V.G.: Fully automated classification of HARDI in vivo data using a support vector machine. Neuroimage 46, 642–651 (2009)CrossRefGoogle Scholar
  95. 95.
    Schwab, E., Çetingül, H. E., Afsari, B., Yassa, M.A., Vidal, R.: Rotation invariant features for HARDI. In: International Conference on Information Processing in Medical Imaging, pp. 705–717. Springer (2013)Google Scholar
  96. 96.
    Sheng, Y., Shen, L.: Orthogonal Fourier–Mellin moments for invariant pattern recognition. JOSA A 11(6), 1748–1757 (1994)CrossRefGoogle Scholar
  97. 97.
    Skibbe, H.: Spherical Tensor Algebra for Biomedical Image Analysis. Ph.D. thesis, Albert-Ludwigs-Universität Freiburg (2013)Google Scholar
  98. 98.
    Skibbe, H., Reisert, M.: STA-toolkit. Available online: https://bitbucket.org/skibbe/sta-toolbox/
  99. 99.
    Skibbe, H., Reisert, M.: Dense rotation invariant brain pyramids for automated human brain parcellation. In Proceedings of the Informatik 2011, Workshop on Emerging Technologies for Medical Diagnosis and Therapy, Berlin, Germany (2011)Google Scholar
  100. 100.
    Skibbe, H., Reisert, M.: Detection of unique point landmarks in HARDI images of the human brain. In: Proceedings of the Workshop on Computational Diffusion MRI (CDMRI’12), part of the MICCAI 2012, Nice, France (2012)Google Scholar
  101. 101.
    Skibbe, H., Reisert, M.,  Burkhardt, H.: SHOG—spherical HOG descriptors for rotation invariant 3D object detection. In: Proc. of the DAGM, pp. 142–151, Frankfurt, Germany, LNCS. Springer (2011)Google Scholar
  102. 102.
    Skibbe, H., Reisert, M., Ronneberger, O., Burkhardt, H.: Spherical Bessel filter for 3D object detection. In: Proceedings of the ISBI. IEEE, Chicago, Illinois (2011)Google Scholar
  103. 103.
    Skibbe, H., Reisert, M., Schmidt, T., Brox, T., Ronneberger, O. Burkhardt, H.: Fast rotation invariant 3D feature computation utilizing efficient local neighborhood operators. IEEE Trans. Pattern Anal. Mach. Intell. (2012)Google Scholar
  104. 104.
    Sorgi, L., Cimminiello, N., Neri, A.: Keypoints selection in the Gauss Laguerre transformed domain. In: Proceedings of the BMVC, vol. II, p. 539. BMVA, Edinburgh, UK (2006)Google Scholar
  105. 105.
    Suk, T., Flusser, J.: Tensor method for constructing 3D moment invariants. In: Proceedings of the CAIP, pp. 212–219. Springer, Seville, Spain (2011)Google Scholar
  106. 106.
    Thorne, K.S.: Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52(2), 299 (1980)MathSciNetCrossRefGoogle Scholar
  107. 107.
    Tournier, J.-D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4), 1459–1472 (2007)CrossRefGoogle Scholar
  108. 108.
    Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4), 1459–1472 (2007)CrossRefGoogle Scholar
  109. 109.
    Tristan-Vega, Antonio, Westin, C.-F.: Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging. NeuroImage 47(2), 638–650 (2009)CrossRefGoogle Scholar
  110. 110.
    Tschumperle, D., Deriche, R.: DT-MRI images: estimation, regularization and application. In: Proceedings of the NeuroImaging Workshop, Eurocast 2003, Las Palmas de Gran Canaria, pp. 46–47. Springer (2003)Google Scholar
  111. 111.
    Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004). (English 0740-3194 )CrossRefGoogle Scholar
  112. 112.
    Tuch, D.S., Weisskoff, R.M., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging of the human brain. In: Proceedings of the ISMRM, Philadelphia, USA, (1999)Google Scholar
  113. 113.
    van Almsick, M.A.: Context Models of Lines and Contours. Ph.D. thesis, Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands (2005)Google Scholar
  114. 114.
    Weickert, Joachim: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31(2–3), 111–127 (1999)CrossRefGoogle Scholar
  115. 115.
    Wigner, E.P.: Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren. Vieweg Verlag, Braunschweig (1931)CrossRefMATHGoogle Scholar
  116. 116.
    Wigner, E.P., Griffin, J.J.: Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Pure and applied Physics. Academic Press, New York (1959)Google Scholar
  117. 117.
    Wormer, P.: Angular momentum theory. Lecture Notes—University of Nijmegen Toernooiveld, 6525 ED Nijmegen, The NetherlandsGoogle Scholar
  118. 118.
    Yang, Bo, Flusser, Jan, Suk, Tomáš: 3D rotation invariants of Gaussian-Hermite moments. Pattern Recognit. Lett. 54, 18–26 (2015)Google Scholar
  119. 119.
    Yap, P.T., Jiang, X., Kot, A.C.: Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1259–1270 (2010)CrossRefGoogle Scholar
  120. 120.
    Yoshimura, H., Etoh, M., Kondo, K., Yokoya, N.: Gray-scale character recognition by Gabor jets projection. In: Proceedings of the ICPR, vol. 2, pp 335–338, Barcelona, Spain, IEEE (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Ishii-Lab, Department of Systems Science, Graduate School of InformaticsKyoto UniversityKyotoJapan
  2. 2.Medical Physics, Faculty of MedicineUniversity FreiburgFreiburg im BreisgauGermany

Personalised recommendations