Journal of Mathematical Imaging and Vision

, Volume 59, Issue 1, pp 84–105 | Cite as

Bijective Digitized Rigid Motions on Subsets of the Plane

  • Kacper Pluta
  • Pascal Romon
  • Yukiko Kenmochi
  • Nicolas Passat
Article

Abstract

Rigid motions in \(\mathbb {R}^2\) are fundamental operations in 2D image processing. They satisfy many properties: in particular, they are isometric and therefore bijective. Digitized rigid motions, however, lose these two properties. To investigate the lack of injectivity or surjectivity and more generally their local behavior, we extend the framework initially proposed by Nouvel and Rémila to the case of digitized rigid motions. Yet, for practical applications, the relevant information is not global bijectivity, which is seldom achieved, but bijectivity of the motion restricted to a given finite subset of \(\mathbb {Z}^2\). We propose two algorithms testing that condition. Finally, because rotation angles are rarely given with infinite precision, we propose a third algorithm providing optimal angle intervals that preserve this restricted bijectivity.

Keywords

Digital geometry Rigid motions Combinatorial analysis Local characterization Bijective transformations 

References

  1. 1.
    Anglin, W.S.: Using Pythagorean triangles to approximate angles. Am. Math. Mon. 95(6), 540–541 (1988)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Fredriksson, K.: Rotation Invariant Template Matching. Ph.D. thesis, University of Helsinki (2001)Google Scholar
  3. 3.
    Galarza, A.I.R., Seade, J.: Introduction to Classical Geometries. Birkhäuser, Cambridge (2007)MATHGoogle Scholar
  4. 4.
    Hunter, D.J.: Essentials of Discrete Mathematics, 2nd edn. Jones & Bartlett Learning, Burlington (2010)MATHGoogle Scholar
  5. 5.
    Jacob, M.A., Andres, E.: On discrete rotations. In: 5th International Workshop on Discrete Geometry for Computer Imagery, pp. 161–174 (1995)Google Scholar
  6. 6.
    Nouvel, B., Rémila, E.: On colorations induced by discrete rotations. In: DGCI, Proceedings, Lecture Notes in Computer Science, vol. 2886, pp. 174–183. Springer (2003)Google Scholar
  7. 7.
    Nouvel, B., Rémila, E.: Characterization of bijective discretized rotations. In: IWCIA, Proceedings, Lecture Notes in Computer Science, vol. 3322, pp. 248–259. Springer (2004)Google Scholar
  8. 8.
    Nouvel, B., Rémila, E.: Configurations induced by discrete rotations: periodicity and quasi-periodicity properties. Discrete Appl. Math. 147(2–3), 325–343 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Nouvel, B., Rémila, E.: Incremental and transitive discrete rotations. In: IWCIA, Lecture Notes in Computer Science, vol. 4040, pp. 199–213. Springer (2006)Google Scholar
  10. 10.
    Pluta, K., Moroz, G., Kenmochi, Y., Romon, P.: Quadric arrangement in classifying rigid motions of a 3D digital image. In: CASC, Lecture Notes in Computer Science, vol. 9890, pp. 426–443 (2016)Google Scholar
  11. 11.
    Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijective rigid motions of the 2D Cartesian grid. In: DGCI, Lecture Notes in Computer Science, vol. 9647, pp. 359–371. Springer (2016)Google Scholar
  12. 12.
    Roussillon, T., Cœurjolly, D.: Characterization of bijective discretized rotations by Gaussian integers. Research Report. LIRIS UMR CNRS 5205 (2016). https://hal.archives-ouvertes.fr/hal-01259826
  13. 13.
    Thibault, Y.: Rotations in 2D and 3D discrete spaces. Ph.D. thesis, Université Paris-Est (2010)Google Scholar
  14. 14.
    Thibault, Y., Kenmochi, Y., Sugimoto, A.: Computing upper and lower bounds of rotation angles from digital images. Pattern Recogn. 42(8), 1708–1717 (2009)CrossRefMATHGoogle Scholar
  15. 15.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 1–45 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.LIGM (UMR 8049), LAMA (UMR 8050), UPEM, UPEC, CNRSUniversité Paris-EstMarne-la-ValléeFrance
  2. 2.LAMA (UMR 8050), UPEM, UPEC, CNRSUniversité Paris-EstMarne-la-ValléeFrance
  3. 3.LIGM (UMR 8049), UPEM, CNRS, ESIEE Paris, ENPCUniversité Paris-EstMarne-la-ValléeFrance
  4. 4.CReSTICUniversité de Reims Champagne-ArdenneReimsFrance

Personalised recommendations