Advertisement

Journal of Mathematical Imaging and Vision

, Volume 59, Issue 1, pp 23–39 | Cite as

Two Plane-Probing Algorithms for the Computation of the Normal Vector to a Digital Plane

  • Jacques-Olivier Lachaud
  • Xavier Provençal
  • Tristan Roussillon
Article
  • 130 Downloads

Abstract

Digital planes are sets of integer points located between two parallel planes. We present a new algorithm that computes the normal vector of a digital plane given only a predicate “is a point x in the digital plane or not”. In opposition to classical recognition algorithm, this algorithm decides on-the-fly which points to test in order to output at the end the exact surface characteristics of the plane. We present two variants: the H-algorithm, which is purely local, and the R-algorithm which probes further along rays coming out from the local neighborhood tested by the H-algorithm. Both algorithms are shown to output the correct normal to the digital planes if the starting point is a lower leaning point. The worst-case time complexity is in \(O(\omega )\) for the H-algorithm and \(O(\omega \log \omega )\) for the R-algorithm, where \(\omega \) is the arithmetic thickness of the digital plane. In practice, the H-algorithm often outputs a reduced basis of the digital plane while the R-algorithm always returns a reduced basis. Both variants perform much better than the theoretical bound, with an average behavior close to \(O(\log \omega )\). Finally, we show how this algorithm can be used to analyze the geometry of arbitrary digital surfaces, by computing normals and identifying convex, concave or saddle parts of the surface. This paper is an extension of Lachaud et al. (Proceedings of 19th IAPR international conference discrete geometry for computer imagery (DGCI’2016), Nantes, France. Springer, Cham, 2016).

Keywords

Digital geometry Digital plane Recognition Normal vector estimation Lattice reduction 

Mathematics Subject Classification

52C07 11P21 65D18 68R 

References

  1. 1.
    Berthé, V., Fernique, T.: Brun expansions of stepped surfaces. Discrete Math. 311(7), 521–543 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity—a review. Discrete Appl. Math. 155(4), 468–495 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Charrier, E., Buzer, L.: An efficient and quasi linear worst-case time algorithm for digital plane recognition. In: Discrete Geometry for Computer Imagery (DGCI’2008), LNCS, vol. 4992, pp. 346–357. Springer, Berlin (2008)Google Scholar
  4. 4.
    Charrier, E., Lachaud, J.O.: Maximal planes and multiscale tangential cover of 3d digital objects. In: Proceedings of International Workshop Combinatorial Image Analysis (IWCIA’2011), Lecture Notes in Computer Science, vol. 6636, pp. 132–143. Springer, Berlin (2011)Google Scholar
  5. 5.
    Chica, A., Williams, J., Andújar, C., Brunet, P., Navazo, I., Rossignac, J., Vinacua, A.: Pressing: smooth isosurfaces with flats from binary grids. Comput. Graph. Forum 27(1), 36–46 (2008)CrossRefGoogle Scholar
  6. 6.
    de Vieilleville, F., Lachaud, J.O., Feschet, F.: Maximal digital straight segments and convergence of discrete geometric estimators. J. Math. Image Vis. 27(2), 471–502 (2007)Google Scholar
  7. 7.
    Doerksen-Reiter, H., Debled-Rennesson, I.: Convex and concave parts of digital curves. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties for Incomplete Data, Computational Imaging and Vision, vol. 31, pp. 145–160. Springer, Berlin (2006)CrossRefGoogle Scholar
  8. 8.
    Fernique, T.: Generation and recognition of digital planes using multi-dimensional continued fractions. Pattern Recogn. 42(10), 2229–2238 (2009)CrossRefMATHGoogle Scholar
  9. 9.
    Feschet, F.: Canonical representations of discrete curves. Pattern Anal. Appl. 8(1), 84–94 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gérard, Y., Debled-Rennesson, I., Zimmermann, P.: An elementary digital plane recognition algorithm. Discrete Appl. Math. 151(1), 169–183 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Jamet, D., Toutant, J.L.: Minimal arithmetic thickness connecting discrete planes. Discrete Appl. Math. 157(3), 500–509 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kerautret, B., Lachaud, J.O.: Meaningful scales detection along digital contours for unsupervised local noise estimation. IEEE Trans. Pattern Anal. Mach. Intell. 43, 2379–2392 (2012)CrossRefGoogle Scholar
  13. 13.
    Kim, C.E., Stojmenović, I.: On the recognition of digital planes in three-dimensional space. Pattern Recogn. Lett. 12(11), 665–669 (1991)CrossRefGoogle Scholar
  14. 14.
    Klette, R., Rosenfeld, A.: Digital straightness—a review. Discrete Appl. Math. 139(1–3), 197–230 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Klette, R., Sun, H.J.: Digital planar segment based polyhedrization for surface area estimation. In: Proceedings of Visual form 2001, LNCS, vol. 2059, pp. 356–366. Springer, Berlin (2001)Google Scholar
  16. 16.
    Labbé, S., Reutenauer, C.: A d-dimensional extension of Christoffel words. In: Discrete and Computational Geometry p. 26 (to appear). ArXiv:1404.4021
  17. 17.
    Lachaud, J.O., Provençal, X., Roussillon, T.: Computation of the normal vector to a digital plane by sampling significant points. In: N. Normand, J. Guédon, F. Autrusseau (eds.) Proceedings of 19th IAPR International Conference Discrete Geometry for Computer Imagery (DGCI’2016), Nantes, France, April 18–20, 2016., pp. 194–205. Springer, Cham (2016)Google Scholar
  18. 18.
    Lachaud, J.O., Provençal, X., Roussillon, T.: An output-sensitive algorithm to compute the normal vector of a digital plane. Theor. Comput. Sci. 624, 73–88 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image Vis. Comput. 25(10), 1572–1587 (2007)CrossRefGoogle Scholar
  20. 20.
    Provot, L., Debled-Rennesson, I.: 3D noisy discrete objects: segmentation and application to smoothing. Pattern Recogn. 42(8), 1626–1636 (2009)CrossRefMATHGoogle Scholar
  21. 21.
    Roussillon, T., Sivignon, I.: Faithful polygonal representation of the convex and concave parts of a digital curve. Pattern Recogn. 44(10–11), 2693–2700 (2011)CrossRefMATHGoogle Scholar
  22. 22.
    Veelaert, P.: Digital planarity of rectangular surface segments. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 647–652 (1994)CrossRefGoogle Scholar
  23. 23.
    Zrour, R., Kenmochi, Y., Talbot, H., Buzer, L., Hamam, Y., Shimizu, I., Sugimoto, A.: Optimal consensus set for digital line and plane fitting. Int. J. Imaging Syst. Technol. 21(1), 45–57 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.LAMA, UMR5127Université Savoie Mont BlancChambéryFrance
  2. 2.CNRS INSA-Lyon, LIRIS, UMR5205Université de LyonLyonFrance

Personalised recommendations