Advertisement

Journal of Mathematical Imaging and Vision

, Volume 57, Issue 3, pp 324–339 | Cite as

A Feasibility Study for a Persistent Homology-Based k-Nearest Neighbor Search Algorithm in Melanoma Detection

  • Massimo Ferri
  • Ivan TombaEmail author
  • Andrea Visotti
  • Ignazio Stanganelli
Article

Abstract

Persistent homology is a fairly new branch of computational topology which combines geometry and topology for an effective shape description of use in Pattern Recognition. In particular, it registers through “Betti Numbers” the presence of holes and their persistence while a parameter (“filtering function”) is varied. In this paper, some recent developments in this field are integrated in a k-nearest neighbor search algorithm suited for an automatic retrieval of melanocytic lesions. Since long, dermatologists use five morphological parameters (A \(=\) asymmetry, B \(=\) boundary, C \(=\) color, D \(=\) diameter, E \(=\) evolution) for assessing the malignancy of a lesion. The algorithm is based on a qualitative assessment of the segmented images by computing both 1 and 2-dimensional persistent Betti Number functions related to the ABCDE parameters and to the internal texture of the lesion. The results of a feasibility test on a set of 107 melanocytic lesions are reported in the section dedicated to the numerical experiments.

Keywords

Melanocytic lesion Persistent Betti Numbers Filtering function Image retrieval 

Notes

Acknowledgments

The support by ARCES, CA-MI S.r.l., IRST-IRCCS and the National Institute of High Mathematics “F. Severi” (INdAM) is gratefully acknowledged.

References

  1. 1.
    Adcock, A., Rubin, D., Carlsson, G.: Classification of hepatic lesions using the matching metric. Comput. Vis. Image Underst. 121, 36–42 (2014). doi: 10.1016/j.cviu.2013.10.014 CrossRefGoogle Scholar
  2. 2.
    Amelard, R., Glaister, J., Wong, A., Clausi, D.A.: High-level intuitive features (HLIFs) for intuitive skin lesion description. IEEE Trans. Med. Eng. 62(3), 820–831 (2015)CrossRefGoogle Scholar
  3. 3.
    Bendich, P., Marron, J.S., Miller, E., Pieloch, A., Skwerer, S.: Persistent homology analysis of brain artery trees. Ann. Appl. Stat. 10(1), 198–218 (2016). doi: 10.1214/15-AOAS886
  4. 4.
    Biasotti, S., Cerri, A., Frosini, P., Giorgi, D.: A new algorithm for computing the 2-dimensional matching distance between size functions. Pattern Recognit. Lett. 32, 1735–1746 (2011)CrossRefGoogle Scholar
  5. 5.
    Biasotti, S., Cerri, A., Frosini, P., Giorgi, D., Landi, C.: Multidimensional size functions for shape comparison. J. Math. Imaging Vis. 32(2), 161–179 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Burroni, M., Corona, R., Dell’Eva, G., et al.: Melanoma computer-aided diagnosis: reliability and feasibility study. Clin. Cancer Res. 10(6), 1881–1886 (2004)CrossRefGoogle Scholar
  7. 7.
    Cagliari, F., Di Fabio, B., Ferri, M.: One-dimensional reduction of multidimensional persistent homology. Proc. Am. Math. Soc. 138, 3003–3017 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cerri, A., Ferri, M., Giorgi, D.: Retrieval of trademark images by means of size functions. Graph. Models 68(5), 451–471 (2006)CrossRefGoogle Scholar
  9. 9.
    Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data. In: 21st International Conference on Information Processing in Medical Imaging, pp. 386–397. Springer (2009)Google Scholar
  10. 10.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. In: J.S.B. Mitchell, G. Rote (eds.) Symposium on Computational Geometry, pp. 263–271. ACM (2005)Google Scholar
  11. 11.
    d’Amico, M.: A new optimal algorithm for computing size function of shapes. In: Proceedings of the CVPRIP Algorithms III, International Conference on Computer Vision, Pattern Recognition and Image Processing, pp. 107–110 (2000)Google Scholar
  12. 12.
    d’Amico, M., Ferri, M., Stanganelli, I.: Qualitative asymmetry measure for melanoma detection. In: Proceedings of the 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp. 1155–1158 (2004)Google Scholar
  13. 13.
    d’Amico, M., Frosini, P., Landi, C.: Using matching distance in size theory: a survey. Int. J. Imaging Syst. Technol. 16(5), 154–161 (2006)CrossRefGoogle Scholar
  14. 14.
    d’Amico, M., Frosini, P., Landi, C.: Natural pseudo-distance and optimal matching between reduced size functions. Acta Appl. Math. 109, 527–554 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Del Mar, C., Green, A., Cooney, T.: Melanocytic lesions excised from the skin: what percentage are malignant? Aust. J. Public Health 18, 221–223 (1994)Google Scholar
  16. 16.
    Dibos, F., Frosini, P., Pasquignon, D.: The use of size functions for comparison of shapes through differential invariants. J. Math. Imaging Vis. 21(2), 107–118 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dreiseitl, S., Binder, M., Hable, K., Kittler, H.: Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial. Melanoma Res. 19(3), 180–184 (2009)CrossRefGoogle Scholar
  18. 18.
    Eckhardt, U., Latecki, L.: Digital topology. In: Current Topics in Pattern Recongnization Research, Research Trends. Council of Scientific Information, Vilayil Gardens, Trivandrum, India (1994)Google Scholar
  19. 19.
    Edelsbrunner, H., Harer, J.: Persistent homology—a survey. In: Goodman, J., Pach, J., Pollack, R. (eds.) Surveys on Discrete and Computational Geometry. Twenty Years Later, vol. 453, pp. 257–282. Contemporary Mathematics, American Mathematical Society, Providence, Rhode Island (2008)Google Scholar
  20. 20.
    Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C., Parkin, D.M.: GLOBOCAN 2008: Cancer incidence and mortality Worldwide: IARC CancerBase No. 10, Lyon, France. http://globocan.iarc.fr (2010)
  21. 21.
    Ferri, M., Stanganelli, I.: Size functions for the morphological analysis of melanocytic lesions. J. Biomed. Imaging, Int (2010). doi: 10.1155/2010/621357 Google Scholar
  22. 22.
    Friedman, R.J., Gutkowicz-Krusin, D., Farber, M.J., et al.: Diagnostic performance of expert dermoscopists vs a computer-vision system on small-diameter melanomas. Arch. Dermatol. 144(4), 476–482 (2008)CrossRefGoogle Scholar
  23. 23.
    Frosini, P.: Connections between size fonctions and critical points. Math. Methods Appl. Sci. 19(7), 555–569 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Frosini, P., Landi, C.: Size theory as a topological tool for computer vision. Pattern Recogn. Image Anal. 9, 596–603 (1999)Google Scholar
  25. 25.
    Frosini, P., Landi, C.: Size functions and formal series. Appl. Algebra Eng. Commun. Comput. 12(4), 327–349 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Glaister, J., Amelard, R., Wong, A., Clausi, D.A.: Msim: Multi-stage illumination modeling of dermatological photographs for illumination-corrected skin lesion analysis. IEEE Trans. Med. Eng. 60(7), 1873–1883 (2013)CrossRefGoogle Scholar
  27. 27.
    Gomes, J., Faugeras, O.: Reconciling distance functions and level sets. J. Vis. Commun. Image Represent. 11, 209–223 (2000)CrossRefGoogle Scholar
  28. 28.
    Haralick, R.M.: A measure for circularity of digital figures. IEEE Trans. Syst. Man Cybern. SMC 4(4), 334–336 (1974)zbMATHGoogle Scholar
  29. 29.
    Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps in comparing persistence diagrams. In: Algorithm Engineering and Experiments (ALENEX) (2016)Google Scholar
  30. 30.
    Khalimsky, E., Kopperman, R., Meyer, P.R.: Computer graphics and connected topologies on finite ordered sets. Topol. Appl. 36, 1–17 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kiani, K., Sharafat, A.R.: E-shaver: An improved dullrazor for digitally removing dark and light-colored hairs in dermoscopic images. Comput. Biol. Med. 41(3), 139–145 (2011)CrossRefGoogle Scholar
  32. 32.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput Vis. Graph. Image Process. 48, 357–393 (1989)CrossRefGoogle Scholar
  33. 33.
    Kopf, A.W., Salope, T.G., Slade, J., Marghoob, A.A., Bart, R.S.: Techniques of cutaneous examination for the detection of skin cancer. Cancer 75(2), 684–690 (1994)Google Scholar
  34. 34.
    Lee, T., Ng, V., Gallagher, R., Coldman, A., McLean, D.: Dullrazor: a software approach to hair removal from images. Comput. Biol. Med. 27, 533–543 (1997)CrossRefGoogle Scholar
  35. 35.
    Li, C., Huang, R., Ding, Z., Gatenby, J.C., Metaxas, D.N., Gore, J.C.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20(7), 2007–2016 (2011)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Li, C., Kao, C., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lucas, R., McMichael, T., Smith, W., Armstrong, B.: Solar Ultraviolet Radiation: Global Burden of Disease from Solar Ultraviolet Radiation. Environmental Burden of Disease Series no. 13, Geneva: World Health Organization (2006)Google Scholar
  39. 39.
    Masood, A., Al-Jumaily, A.A.: Computer aided diagnostic support system for skin cancer: a review of techniques and algorithms. J. Biomed. Imaging Int. (2013). doi: 10.1155/2013/323268 Google Scholar
  40. 40.
    Massone, C., Di Stefani, A., Soyer, P.: Dermoscopy for skin cancer detection. Curr. Opin. Oncol. 17, 147–153 (2005)CrossRefGoogle Scholar
  41. 41.
    Miller, M., Ackermann, A.B.: How accurate are dermatologists in the diagnosis of melanoma? Degree of accuracy and implication. Arch. Dermatol. 128, 559–560 (1992)CrossRefGoogle Scholar
  42. 42.
    Mollersen, K., Kirchesch, H., Zortea, M., Schopf, T.R., Hindberg, K., Godtliebsen, F.: Computer-aided decision support for melanoma detection applied on melanocytic and nonmelanocytic skin lesions: a comparison of two systems based on automatic analysis of dermoscopic images. Biomed. Res. Int. 8 pp. (2015)Google Scholar
  43. 43.
    Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Pehamberger, H., Binder, M., Steiner, A., et al.: In vivo epiluminescence microscopy: improvement of early diagnosis of melanoma. Invest. Dermatol 100, 356S–362S (1993)CrossRefGoogle Scholar
  45. 45.
    Pehamberger, H., Steiner, A., Wolff, K.: In vivo epiluminescence microscopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions. Am. Acad. Dermatol 17, 571–583 (1987)CrossRefGoogle Scholar
  46. 46.
    Rosenfeld, A.: Digital topology. Am. Math. Mon. 86, 621–630 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Seidenari, S., Pellacani, G., Giannetti, A.: Digital videomicroscopy and image analysis with automatic classification for detection of thin melanomas. Melanoma Res. 9(2), 163–171 (1999)CrossRefGoogle Scholar
  48. 48.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  49. 49.
    Siegel, R., Ma, J., Zou, Z., Jemal, A.: Cancer statistics 2014. CA Cancer J. Clin. 64(1), 9–29 (2014)CrossRefGoogle Scholar
  50. 50.
    Stanganelli, I., Brucale, A., Calori, L., et al.: Computer-aided diagnosis of melanocytic lesions. Anticancer Res. 25(6), 4577–4582 (2005)Google Scholar
  51. 51.
    Stanganelli, I., Bucchi, L.: Epiluminescence microscopy versus clinical evaluation of pigmented skin lesions: effects of operator’s training on reproducibility and accuracy. Dermatology and Venereology Society of the Canton of Ticino. Dermatology 196(2), 199–203 (1998)CrossRefGoogle Scholar
  52. 52.
    Stanganelli, I., Clemente, C., Mihm Jr., M.C.: Skin melanoma CD-multimedial interactive atlas for prevention, diagnosis and therapy of melanoma and pigmented skin lesions. Istituto Oncologico Romagnolo Ed., MAF Turin, Italy (2001) (In Italian) Google Scholar
  53. 53.
    Stanganelli, I., Seidenari, S., Serafini, M., Pellacani, G., Bucchi, L.: Diagnosis of pigmented skin lesions by epiluminescence microscopy: determinants of accuracy improvement in a nationwide training programme for practical dermatologists. Public Health 113(5), 237–242 (1999)Google Scholar
  54. 54.
    Stanganelli, I., Serafini, M., Cainelli, T., Cristofolini, M., Baldassari, L., Staffa, M., Bucchi, L.: Accuracy of epiluminescence microscopy among practical dermatologists: a study from the Emilia–Romagna region of Italy. Tumori 84(6), 701–705 (1998)Google Scholar
  55. 55.
    Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 32(2), 215–225 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Vestergaard, M.E., Macaskill, P., Holt, P.E., Menzies, S.W.: Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting. Br. J. Dermatol. 159(3), 669–676 (2008)Google Scholar
  57. 57.
    Weinstock, M.A.: Epidemiology, etiology and control of melanoma. Med. Health R.I. 84(7), 234–236 (2001)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Massimo Ferri
    • 1
  • Ivan Tomba
    • 2
    Email author
  • Andrea Visotti
    • 2
  • Ignazio Stanganelli
    • 3
    • 4
  1. 1.Università di BolognaBolognaItaly
  2. 2.CA-MI S.r.l.Pilastro, ParmaItaly
  3. 3.Skin Cancer Unit IRCCS-IRST Istituto Scientifico Romagnolo per la Cura e lo Studio dei TumoriMeldola, ForlìItaly
  4. 4.Clinica DermatologicaUniversità di ParmaParmaItaly

Personalised recommendations