Advertisement

Journal of Mathematical Imaging and Vision

, Volume 57, Issue 1, pp 117–133 | Cite as

Fourier Descriptors Based on the Structure of the Human Primary Visual Cortex with Applications to Object Recognition

  • Amine Bohi
  • Dario Prandi
  • Vincente Guis
  • Frédéric Bouchara
  • Jean-Paul Gauthier
Article

Abstract

In this paper, we propose a supervised object recognition method using new global features and inspired by the model of the human primary visual cortex V1 as the semidiscrete roto-translation group \(SE(2,N) = {\mathbb {Z}}_N\rtimes {\mathbb {R}}^2\). The proposed technique is based on generalized Fourier descriptors on the latter group, which are invariant to natural geometric transformations (rotations, translations). These descriptors are then used to feed an SVM classifier. We have tested our method against the COIL-100 image database and the ORL face database, and compared it with other techniques based on traditional descriptors, global and local. The obtained results have shown that our approach looks extremely efficient and stable to noise, in presence of which it outperforms the other techniques analyzed in the paper.

Keywords

Descriptor Fourier transform Hexagonal grid Geometric transformations Support vector machine Object recognition 

Notes

Acknowledgments

This research has been supported by the European Research Council, ERC StG 2009 “GeCoMethods”, contract n. 239748. The second and last authors were partially supported by the Grant ANR-15-CE40-0018 of the ANR.

References

  1. 1.
    Barut, A., Raçzka, R.: Theory of Group Representations and Applications. World Scientific, Singapore (1977)zbMATHGoogle Scholar
  2. 2.
    Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. Computer Vision—ECCV 2006, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Boscain, U., Duplaix, J., Gauthier, J.P., Rossi, F.: Anthropomorphic image reconstruction via hypoelliptic diffusion. SIAM J. Control Optim. 50, 1–25 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Boscain, U., Chertovskih, R., Gauthier, J.P., Remizov, A.: Hypoelliptic diffusion and human vision: a semi-discrete new twist on the petitot theory. SIAM J. Imaging Sci. 7(2), 669–695 (2014a)CrossRefzbMATHGoogle Scholar
  5. 5.
    Boscain, U., Gauthier, J.P., Prandi, D., Remizov, A.: Image reconstruction via non-isotropic diffusion in Dubins/Reed–Shepp-like control systems. In: 53rd IEEE Conference on Decision and Control, pp. 4278–4283 (2014b)Google Scholar
  6. 6.
    Bressloff, P., Cowan, J., Golubitsky, M., Thomas, P., Wiener, M.: Geometric visual hallucinations, euclidean symmetry and the functional architecture of striate cortex. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 356, 299–330 (2001)CrossRefGoogle Scholar
  7. 7.
    Choksuriwong, A., Emile, B., Rosenberger, C., Lauren, H.: Comparative study of global invariant descriptors for object recognition. J. Electron. Imaging 17, 1–35 (2008)Google Scholar
  8. 8.
    Chong, C., Raveendran, P., Mukundan, R.: A comparative analysis of algorithms for fast computation of Zernike moments. Pattern Recogn. 36(3), 731–742 (2003a)CrossRefzbMATHGoogle Scholar
  9. 9.
    Chong, C.W., Raveendran, P., Mukundan, R.: Translation invariants of zernike moments. Pattern Recogn. 36(8), 1765–1773 (2003b)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chou, J., O’Neill, W., Cheng, H.: Pavement distress classification using neural networks. In: 1994 IEEE International Conference on Systems, Man, and Cybernetics, 1994. Humans, Information and Technology, vol. 1, pp. 397–401. doi: 10.1109/ICSMC.1994.399871 (1994)
  11. 11.
    Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. Pattern Recogn. 24(3), 307–326 (2006)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, IEEE, vol. 1, pp. 886–893 (2005)Google Scholar
  13. 13.
    Derrode, S., Ghorbel, F.: Robust and efficient fourier-mellin transform approximations for invariant grey-level image description and reconstruction. Comput. Vis. Image Underst. 83(1), 57–78 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Dubnov, S., Tishby, N., Cohen, D.: Polyspectra as measures of sound texture and timbre. Comput. Vis. Image Underst. 26(4), 277–314 (1997)Google Scholar
  15. 15.
    Duits, R., Franken, E.: Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part I: Linear left-invariant diffusion equations on SE(2). Q. Appl. Math. 68, 255–292 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Duits, R., Franken, E.: Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part II: Nonlinear left-invariant diffusions on invertible orientation scores. Q. Appl. Math. 68, 1–38 (2010)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Führ, H., Mayer, M.: Continuous wavelet transforms from semidirect products : Cyclic representations and Plancherel measure. J. Fourier Anal. Appl. 8(4):1–23. http://www.springerlink.com/index/G7TC4AANGTUC4HXW.pdf, 0102002v1 (2002)
  18. 18.
    Galerne, B., Gousseau, Y., Morel, J.: Random phase textures: theory and synthesis. IEEE Trans. Image Process. 20(1), 257–267 (2011)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Granlund, G.H.: Fourier preprocessing for hand print character recognition. IEEE Trans. Image Process. C–21(2), 195–201 (1972)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Hewitt, E., Ross, K.: Abstract Harmonic Analysis—Volume 1. Springer, Berlin/New York (1963)CrossRefzbMATHGoogle Scholar
  21. 21.
    Hjelmas, E., Low, B.: Face detection: a survey. Comput. Vis. Image Underst. 83(3), 236–274 (2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    Hu, M.: Visual pattern recognition by moment invariants. Comput. Vis. Image Underst. 8(2), 179–187 (1962)zbMATHGoogle Scholar
  23. 23.
    Hubel, D., Wiesel, T.: Receptive fields of single neurones in the cat’s striate cortex. Comput. Vis. Image Underst. 148, 574–591 (1959)Google Scholar
  24. 24.
    Kakarala, R.: The bispectrum as a source of phase-sensitive invariants for fourier descriptors: a group-theoretic approach. Comput. Vis. Image Underst. 44(3), 341–353 (2012)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. IEEE, vol 2, p. II-506 (2004)Google Scholar
  26. 26.
    Kuhl, F.P., Giardina, C.R.: Elliptic Fourier features of a closed contour. Comput. Vis. Image Underst. 18(3), 236–258 (1982)Google Scholar
  27. 27.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Comput. Vis. Image Underst. 60(2), 91–110 (2004)Google Scholar
  28. 28.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. Comput. Vis. Image Underst. 27(10), 1615–1630 (2005)Google Scholar
  29. 29.
    Milgram, J., Cheriet, M., Sabourin, R.: “One Against One” or “One Against All”: which one is better for handwriting recognition with SVMs? In: Lorette, G. (ed.) Tenth International Workshop on Frontiers in Handwriting Recognition, Université de Rennes 1, Suvisoft, La Baule. http://www.suvisoft.com (2006)
  30. 30.
    Morel, J.M., Yu, G.: Asift: a new framework for fully affine invariant image comparison. Comput. Vis. Image Underst. 2(2), 438–469 (2009)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library (coil-20). Tech. rep., technical report CUCS-005-96 (1996)Google Scholar
  32. 32.
    Petitot, J.: Neurogéométrie de la vision - Modèles mathématiques et physiques des architectures fonctionnelles. Les Éditions de l’École Polytechnique (2008)Google Scholar
  33. 33.
    Prandi, D., Boscain, U., Gauthier, J.P.: Image processing in the semidiscrete group of rototranslations. In: To appear in the Proceedings of the 2nd Conference on Geometric Science of Information (2015)Google Scholar
  34. 34.
    Raja, D.M.S., Shanmugam, A.: Artificial neural networks based war scene classification using invariant moments and glcm features: A comparative study. Int. J. Eng. Sci. Technol. 3(2), 1189–1195 (2011)Google Scholar
  35. 35.
    Rajasekaran, S., Pai, G.V.: Image recognition using simplified fuzzy artmap augmented with a moment based feature extractor. Int. J. Pattern Recognit. Artif. Intell. 14(08), 1081–1095 (2000)CrossRefGoogle Scholar
  36. 36.
    Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, 1994, pp. 138–142 (1994)Google Scholar
  37. 37.
    Sifre, L., Mallat, S.: Rotation, scaling and deformation invariant scattering for texture discrimination. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1233–1240. doi: 10.1109/CVPR.2013.163 (2013)
  38. 38.
    Smach, F., Lemaître, C., Gauthier, J.P., Miteran, J., Atri, M.: Generalized Fourier descriptors with applications to objects recognition in SVM context. Int. J. Pattern Recognit. Artif. Intell. 30, 43–71 (2008)MathSciNetGoogle Scholar
  39. 39.
    Vapnik, V.N., Vapnik, V.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)zbMATHGoogle Scholar
  40. 40.
    Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane closed curves. IEEE Trans. Comput. C–21(3), 269–281 (1972)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Amine Bohi
    • 1
  • Dario Prandi
    • 2
  • Vincente Guis
    • 1
  • Frédéric Bouchara
    • 1
  • Jean-Paul Gauthier
    • 1
  1. 1.LSIS LaboratoryUniversity of South Toulon - VarLa Garde CedexFrance
  2. 2.CEREMADE LaboratoryUniversity of Paris-DauphineParis Cedex 16France

Personalised recommendations