Journal of Mathematical Imaging and Vision

, Volume 56, Issue 3, pp 430–440 | Cite as

Decoupled Algorithm for MRI Reconstruction Using Nonlocal Block Matching Model: BM3D-MRI

  • Ender M. Eksioglu


The block matching 3D (BM3D) is an efficient image model, which has found few applications other than its niche area of denoising. We will develop a magnetic resonance imaging (MRI) reconstruction algorithm, which uses decoupled iterations alternating over a denoising step realized by the BM3D algorithm and a reconstruction step through an optimization formulation. The decoupling of the two steps allows the adoption of a strategy with a varying regularization parameter, which contributes to the reconstruction performance. This new iterative algorithm efficiently harnesses the power of the nonlocal, image-dependent BM3D model. The MRI reconstruction performance of the proposed algorithm is superior to state-of-the-art algorithms from the literature. A convergence analysis of the algorithm is also presented.


Image reconstruction Magnetic resonance Block matching BM3D Compressed sensing Sparsity 


  1. 1.
    Akçakaya, M., Basha, T.A., Goddu, B., Goepfert, L.A., Kissinger, K.V., Tarokh, V., Manning, W.J., Nezafat, R.: Low-dimensional-structure self-learning and thresholding: regularization beyond compressed sensing for MRI reconstruction. Magn. Reson. Med. 66(3), 756–767 (2011)CrossRefGoogle Scholar
  2. 2.
    Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20(1), 103–120 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chambolle, A., De Vore, R., Lee, N.Y., Lucier, B.: Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7(3), 319–335 (1998). doi: 10.1109/83.661182 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numerische Mathematik 76(2), 167–188 (1997). doi: 10.1007/s002110050258 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Combettes, P., Pesquet, J.: A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Topics Signal Process. 1(4), 564–574 (2007). doi: 10.1109/JSTSP.2007.910264 CrossRefGoogle Scholar
  6. 6.
    Crandall, R., Bilgin, A.: Lossless image compression using causal block matching and 3d collaborative filtering. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 5636–5640 (2014). doi: 10.1109/ICIP.2014.7026140
  7. 7.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007). doi: 10.1109/TIP.2007.901238 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image restoration by sparse 3d transform-domain collaborative filtering. In: Proc. SPIE vol. 6812, pp. 1–12 (2008)Google Scholar
  9. 9.
    Danielyan, A., Foi, A., Katkovnik, V., Egiazarian, K.: Image upsampling via spatially adaptive block-matching filtering. In: Signal Processing Conference, 2008 16th European, pp. 1–5 (2008)Google Scholar
  10. 10.
    Danielyan, A., Katkovnik, V., Egiazarian, K.: Image deblurring by augmented Lagrangian with BM3D frame prior. Workshop on Information Theoretic Methods in Science and Engineering (WITMSE), Tampere, Finland pp. 16–18 (2010)Google Scholar
  11. 11.
    Danielyan, A., Katkovnik, V., Egiazarian, K.: BM3D frames and variational image deblurring. IEEE Trans. Image Process. 21(4), 1715–1728 (2012). doi: 10.1109/TIP.2011.2176954 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Egiazarian, K., Foi, A., Katkovnik, V.: Compressed sensing image reconstruction via recursive spatially adaptive filtering. In: 2007 IEEE International Conference on Image Processing (ICIP), vol. 1, pp. 549–552 (2007)Google Scholar
  13. 13.
    Fadili, M.J., Starck, J.L., Murtagh, F.: Inpainting and zooming using sparse representations. Comput. J. 52(1), 64–79 (2007)CrossRefGoogle Scholar
  14. 14.
    Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (grappa). Magn. Reson. Med. 47(6), 1202–1210 (2002). doi: 10.1002/mrm.10171 CrossRefGoogle Scholar
  16. 16.
    Gunturk, B.K., Li, X.: Image Restoration: Fundamentals and Advances. CRC Press, New York (2012)zbMATHGoogle Scholar
  17. 17.
    Huang, J., Zhang, S., Metaxas, D.: Efficient MR image reconstruction for compressed MR imaging. Med. Image Anal. 15(5), 670–679 (2011). doi: 10.1016/ CrossRefGoogle Scholar
  18. 18.
    Li, X.: Fine-granularity and spatially-adaptive regularization for projection-based image deblurring. IEEE Trans. Image Process. 20(4), 971–983 (2011). doi: 10.1109/TIP.2010.2081681 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Li, X.: Image recovery via hybrid sparse representations: a deterministic annealing approach. IEEE J. Sel. Top. Signal Process. 5(5), 953–962 (2011). doi: 10.1109/JSTSP.2011.2138676 CrossRefGoogle Scholar
  20. 20.
    Lustig, M., Donoho, D., Pauly, J.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)CrossRefGoogle Scholar
  21. 21.
    Lustig, M., Donoho, D., Santos, J., Pauly, J.: Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008). doi: 10.1109/MSP.2007.914728 CrossRefGoogle Scholar
  22. 22.
    Ma, S., Yin, W., Zhang, Y., Chakraborty, A.: An efficient algorithm for compressed MR imaging using total variation and wavelets. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008. pp. 1–8 (2008). doi: 10.1109/CVPR.2008.4587391
  23. 23.
    Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: Sense: sensitivity encoding for fast mri. Magn. Reson. Med. 42(5), 952–962 (1999)CrossRefGoogle Scholar
  24. 24.
    Qu, X., Cao, X., Guo, D., Hu, C., Chen, Z.: Combined sparsifying transforms for compressed sensing MRI. Electron. Lett. 46(2), 121–123 (2010). doi: 10.1049/el.2010.1845 CrossRefGoogle Scholar
  25. 25.
    Qu, X., Hou, Y., Lam, F., Guo, D., Zhong, J., Chen, Z.: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med. Image Anal. 18(6), 843–856 (2014)CrossRefGoogle Scholar
  26. 26.
    Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imag. 30, 1028–1041 (2011)CrossRefGoogle Scholar
  27. 27.
    Setzer, S.: Operator splittings, Bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92(3), 265–280 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sreehari, S., Venkatakrishnan, S.V., Drummy, L.F., Simmons, J.P., Bouman, C.A.: Advanced prior modeling for 3d bright field electron tomography. Proc. SPIE 9401, 940,108–1–940,108–12 (2015)Google Scholar
  29. 29.
    Tan, J., Ma, Y., Baron, D.: Compressive imaging via approximate message passing with image denoising. IEEE Trans. Signal Process. 63(8), 2085–2092 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wen, Y.W., Ng, M.K., Ching, W.K.: Iterative algorithms based on decoupling of deblurring and denoising for image restoration. SIAM J. Sci. Comput. 30(5), 2655–2674 (2008)Google Scholar
  31. 31.
    Yang, J., Zhang, Y., Yin, W.: A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE J. Sel. Topics Signal Process. 4(2), 288–297 (2010). doi: 10.1109/JSTSP.2010.2042333 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Electronics and Communications Engineering DepartmentIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations