Journal of Mathematical Imaging and Vision

, Volume 53, Issue 3, pp 364–382 | Cite as

Constrained Ellipse Fitting with Center on a Line

  • Patrick WaibelEmail author
  • Jörg Matthes
  • Lutz Gröll


Fitting an ellipse to given data points is a common optimization task in computer vision problems. However, the possibility of incorporating the prior constraint “the ellipse’s center is located on a given line” into the optimization algorithm has not been examined so far. This problem arises, for example, by fitting an ellipse to data points representing the path of the image positions of an adhesion inside a rotating vessel whose position of the rotational axis in the image is known. Our new method makes use of a constrained algebraic cost function with the incorporated “ellipse center on given line”-prior condition in a global convergent one-dimensional optimization approach. Further advantages of the algorithm are computational efficiency and numerical stability.


Ellipse fitting Constrained cost function Eigenvalue problem 



The authors thank the anonymous reviewers for their valuable feedback. Especially, we would like to thank for providing parts of the proof for Theorem 2.


  1. 1.
    Adams, W., Loustaunau, P.: An introduction to Gröbner bases. Graduate studies in mathematics. Am. Math Soc (1994)Google Scholar
  2. 2.
    Ahn, S.J., Rauh, W., Warnecke, H.J.: Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern Recognit. 34(12), 2283–2303 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Al-Sharadqah, A., Chernov, N.: A doubly optimal ellipse fit. Comput. Stat. Data Anal. 56(9), 2771–2781 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Batterson, S., Smillie, J.: Rayleigh quotient iteration for nonsymmetric matrices. Math. Comput. 55(191), 169–178 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Brent, R.P.: Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs, NJ (1973)zbMATHGoogle Scholar
  6. 6.
    Cheng, Y.C., Lee, S.C.: A new method for quadratic curve detection using k-ransac with acceleration techniques. Pattern Recognit. 28(5), 663–682 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chojnacki, W., Brooks, M., van den Hengel, A., Gawley, D.: On the fitting of surfaces to data with covariances. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1294–1303 (2000)CrossRefGoogle Scholar
  8. 8.
    Dave, R.N.: Generalized fuzzy c-shells clustering and detection of circular and elliptical boundaries. Pattern Recognit. 25(7), 713–721 (1992)CrossRefGoogle Scholar
  9. 9.
    Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least-squares fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21, 476–480 (1999)CrossRefGoogle Scholar
  10. 10.
    Forsythe, G., Malcolm, M., Moler, C.: Computer Methods for Mathematical Computations. Prentice-Hall, Englewood Cliffs, NJ (1976)Google Scholar
  11. 11.
    Gander, W., Golub, G.H., Strebel, R.: Least squares fitting of circles and ellipses. BIT Numer. Math. 34(4), 558–578 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Guil, N., Zapata, E.: Lower order circle and ellipse hough transform. Pattern Recognit. 30, 1729–1744 (1997)CrossRefGoogle Scholar
  13. 13.
    Halíř, R., Flusser, J.: Numerically stable direct least squares fitting of ellipses. In: Proceedings of the 6th International Conference Computer Graphics and Visualization, vol. 1, pp. 125–132 (1998)Google Scholar
  14. 14.
    Hughes, G.B., Chraibi, M.: Calculating ellipse overlap areas. Comput. Vis. Sci. 15(5), 291–301 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jarlebring, E., Kvaal, S., Michiels, W.: Computing all pairs \((\lambda,\mu )\) such that \(\lambda \) is a double eigenvalue of \({A}+\mu {B}\). SIAM J. Matrix Anal. Appl. 32(3), 902–927 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Kanatani, K., Al-Sharadqah, A., Chernov, N., Sugaya, Y.: Renormalization returns: Hyper-renormalization and its applications. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision ECCV 2012. Lecture Notes in Computer Science, vol. 7574, pp. 384–397. Springer, Berlin (2012)Google Scholar
  17. 17.
    Kanatani, K., Rangarajan, P.: Hyper least squares fitting of circles and ellipses. Comput. Stat. Data Anal. 55(6), 2197–2208 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lasley, J.W.: On degenerate conics. Am. Math. Mon. 64(5), 362–364 (1957)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lukacs, G., Martin, R., Marshall, D.: Faithful least-squares fitting of spheres, cylinders, cones and tori for reliable segmentation. In: H. Burkhardt, B. Neumann (eds.) Proceedings of the 5th European Conference on Computer Vision—Volume I, Lecture Notes in Computer Science, vol. 1406, pp. 671–686. Springer, Berlin (1998)Google Scholar
  20. 20.
    Markovsky, I., Kukush, A., Huffel, S.V.: Consistent least squares fitting of ellipsoids. Numerische Mathematik 98(1), 177–194 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Masuzaki, T., Sugaya, Y., Kanatani, K.: High accuracy ellipse-specific fitting. In: Klette, R., Rivera, M., Satoh, S. (eds.) Image and Video Technology. Lecture Notes in Computer Science, vol. 8333, pp. 314–324. Springer, Berlin (2014)Google Scholar
  22. 22.
    McLaughlin, R.A.: Randomized hough transform: improved ellipse detection with comparison. Pattern Recognit. Lett. 19(3–4), 299–305 (1998)zbMATHCrossRefGoogle Scholar
  23. 23.
    Morimoto, C.H., Mimica, M.R.: Eye gaze tracking techniques for interactive applications. Comp. Vis. Image Underst. 98(1), 4–24 (2005)CrossRefGoogle Scholar
  24. 24.
    Pope, S.B.: Algorithms for ellipsoids. Cornell University, Ithaca, NY (2008)Google Scholar
  25. 25.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, Cambridge, MA (2007)Google Scholar
  26. 26.
    Rahayem, M., Werghi, N., Kjellander, J.: Best ellipse and cylinder parameters estimation from laser profile scan sections. Opt. Lasers Eng. 50(9), 1242–1259 (2012)CrossRefGoogle Scholar
  27. 27.
    Ray, N., Acton, S., Ley, K.: Tracking leukocytes in vivo with shape and size constrained active contours. IEEE Trans. Med. Imag. 21, 1222–1235 (2002)CrossRefGoogle Scholar
  28. 28.
    Sage, D., Neumann, F., Hediger, F., Gasser, S., Unser, M.: Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans. Med. Imag. 14, 1372–1383 (2005)CrossRefGoogle Scholar
  29. 29.
    Szpak, Z., Chojnacki, W., van den Hengel, A.: A comparison of ellipse fitting methods and implications for multiple-view geometry estimation. In: 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA), pp. 1–8 (2012)Google Scholar
  30. 30.
    Szpak, Z., Chojnacki, W., van den Hengel, A.: Guaranteed ellipse fitting with the sampson distance. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision ECCV 2012. Lecture Notes in Computer Science, vol. 7576, pp. 87–100. Springer, Berlin (2012)Google Scholar
  31. 31.
    Waibel, P., Matthes, J., Gröll, L., Keller, H.: A structure from motion approach for the analysis of adhesions in rotating vessels. In: 2014 International Conference on 3D Vision—3DV 2014, p. to appear (2014)Google Scholar
  32. 32.
    Yu, J., Kulkarni, S.R., Poor, H.V.: Robust ellipse and spheroid fitting. Pattern Recognit. Lett. 33(5), 492–499 (2012)CrossRefGoogle Scholar
  33. 33.
    Zhang, S.C., Liu, Z.Q.: A robust, real-time ellipse detector. Pattern Recognit. 38(2), 273–287 (2005)zbMATHCrossRefGoogle Scholar
  34. 34.
    Zhang, Z.: Parameter estimation techniques: a tutorial with application to conic fitting. Image Vis. Comput. 15(1), 59–76 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute for Applied Computer ScienceKarlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations