Journal of Mathematical Imaging and Vision

, Volume 52, Issue 1, pp 145–172 | Cite as

No-Reference Image Quality Assessment and Blind Deblurring with Sharpness Metrics Exploiting Fourier Phase Information

  • Arthur Leclaire
  • Lionel Moisan


It has been known for more than 30 years that most of the geometric content of a digital image is encoded in the phase of its Fourier transform. This has led to several works that exploit the global (Fourier) or local (Wavelet) phase information of an image to achieve quality assessment, edge detection, and, more recently, blind deblurring. We here propose a deeper insight into three recent sharpness metrics (global phase coherence, sharpness index, and a simplified version of it), which all measure in a probabilistic sense the surprisingly small total variation of an image compared to that of certain associated random phase fields. We exhibit several theoretical connections between these indices and study their behavior on a general class of stationary random fields. We also use experiments to highlight the behavior of these metrics with respect to blur, noise, and deconvolution artifacts (ringing). Finally, we propose an application to isotropic blind deblurring and illustrate its efficiency on several examples.


Phase coherence Total variation  Fourier transform Random phase noise  No-reference image quality assessment Image sharpness Blind deblurring Oracle deconvolution filter 


  1. 1.
    Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., Silverman, E.: An empirical distribution function for sampling with incomplete information. Ann. Math. Stat., 641–647 (1955)Google Scholar
  2. 2.
    Blanchet, G., Moisan, L., Rougé, B.: A linear prefilter for image sampling with ringing artifact control. Proc. Int. Conf. Image Process. (ICIP) 3, 577–580 (2005)Google Scholar
  3. 3.
    Blanchet, G., Moisan, L., Rougé, B.: Measuring the global phase coherence of an image. Proc. Int. Conf. Image Process. (ICIP), 1176–1179 (2008)Google Scholar
  4. 4.
    Blanchet, G., Moisan, L.: An explicit sharpness index related to global phase coherence. Proc. Int. Conf. Acoust. Speech Sig. Process. (ICASSP), 1065–1068 (2012)Google Scholar
  5. 5.
    Calderero, F., Moreno, P.: Evaluation of sharpness measures and proposal of a stop criterion for reverse diffusion in the context of image deblurring. In: Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP) (2013)Google Scholar
  6. 6.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)MathSciNetGoogle Scholar
  7. 7.
    Chandler, D.M.: Seven challenges in image quality assessment: past, present, and future research. ISRN Signal Processing, article id. 905685, (2013)Google Scholar
  8. 8.
    Deriugin, N.G.: The power spectrum and the correlation function of the television signal. Telecommunications 1(7), 1–12 (1956)Google Scholar
  9. 9.
    Desolneux, A., Moisan, L., Morel, J.-M.: Dequantizing image orientation. IEEE Trans. Image Process. 11(10), 1129–1140 (2002)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Desolneux, A., Moisan, L., Morel, J.-M.: From gestalt theory to image analysis: a probabilistic approach. Springer, collection. Interdisciplinary Applied Mathematics, vol. 34 (2008)Google Scholar
  11. 11.
    Desolneux, A., Moisan, L., Ronsin, S.: A compact representation of random phase and Gaussian textures. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1381–1384 (2012)Google Scholar
  12. 12.
    Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. SIAM, Classics in Applied Mathematics (1999)Google Scholar
  13. 13.
    Ferzli, R., Karam, L.J.: A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE Trans. Image Process. 18(4), 717–728 (2009)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Grosjean, B., Moisan, L.: A-contrario detectability of spots in textured backgrounds. J. Math. Imaging Vision 33(3), 313–337 (2009)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Frisen, M.: Unimodal regression. Stat. 35(4), 479–485 (1986)Google Scholar
  16. 16.
    Galerne, B., Gousseau, Y., Morel, J.-M.: Random phase textures: theory and synthesis. IEEE Trans. Image Process. 20(1), 257–267 (2011)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Hassen, R., Wang, Z., Salama, M.: No-reference image sharpness assessment based on local phase coherence measurement. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2434–2437 (2010)Google Scholar
  18. 18.
    Janson, S.: Normal convergence by higher semiinvariants with applications to sums of dependent random variables and random graphs. Ann. Probab. 16(1), 305–312 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kovesi, P.: Phase congruency: a low-level image invariant. Psychol. Res. 64, 136–148 (2000)CrossRefGoogle Scholar
  20. 20.
    Kovesi, P.: Image features from phase congruency. Technical Report (1999)Google Scholar
  21. 21.
    Louchet, C., Moisan, L.: Total variation denoising using iterated conditional expectation. In: Proceedings of European Signal Processing Conference (EUSIPCO) (2014)Google Scholar
  22. 22.
    Leclaire, A., Moisan, L.: Blind deblurring using a simplified sharpness index. In: Proceedings of International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), pp. 86–97 (2013)Google Scholar
  23. 23.
    Leclaire, A., Moisan, L.: Une Variante Non Périodique du Sharpness Index. Actes du GRETSI (in french), pp. 86–97 (2013)Google Scholar
  24. 24.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient Marginal Likelihood Optimization in Blind Deconvolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2657–2664 (2011)Google Scholar
  25. 25.
    Liu, Y., Wang, J., Cho, S., Finkelstein, A., Rusinkiewicz, S.: A no-reference metric for evaluating the quality of motion deblurring. ACM Trans. Gr. (TOG) 32(6), 175 (2013)Google Scholar
  26. 26.
    Marziliano, P., Dufaux, F., Winkler, S., Ebrahimi, T.: Perceptual blur and ringing metrics: application to JPEG2000. Sig. Process. 19(2), 163–172 (2004)Google Scholar
  27. 27.
    Moisan, L.: How to discretize the total variation of an image? Proc. Appl. Math. Mech. 7, 1041907–1041908 (2007)CrossRefGoogle Scholar
  28. 28.
    Moisan, L.: Periodic plus smooth image decomposition. J. Math. Imaging Vision 39(2), 120–145 (2011)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Morrone, M.C., Burr, D.C.: Feature detection in human vision: a phase-dependent energy model. In: Proceedings of the Royal Society of London, Series B, pp. 221–245 (1988)Google Scholar
  30. 30.
    Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. Proc. IEEE 69, 529–541 (1981)CrossRefGoogle Scholar
  31. 31.
    Ruderman, D.L.: The statistics of natural images. Network 5(4), 517–548 (1994)CrossRefzbMATHGoogle Scholar
  32. 32.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)CrossRefzbMATHGoogle Scholar
  33. 33.
    Shevtsova, I.: An improvement of convergence rate estimates in the Lyapunov theorem. Dokl. Math. 82, 862–864 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Stout, Q.F.: Unimodal regression via prefix isotonic regression. Comput. Stat. Data Anal. 53, 289–297 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 16(2), 349–366 (2007)CrossRefMathSciNetGoogle Scholar
  36. 36.
    van Wijk, J.J.: Spot noise texture synthesis for data visualization. ACM SIGGRAPH Comput. Gr. 25(4), 309–318 (1991)CrossRefGoogle Scholar
  37. 37.
    Vu, C.T., Chandler, D.M.: S3: a spectral and spatial sharpness measure. In: Advances in Multimedia, Proceedings of the International Conference MMEDIA, pp. 37–43 (2009)Google Scholar
  38. 38.
    Wang, Z., Bovik, A.: Modern Image Quality Assessment (Synthesis Lectures on Image, Video, and Multimedia Processing). Morgan & Claypool Publishers, San Rafael, CA (2006)Google Scholar
  39. 39.
    Wang, Z., Simoncelli, E.P.: Local phase coherence and the perception of blur. Adv. Neural Inf. Process. Syst. (NIPS) 16, 786–792 (2004)Google Scholar
  40. 40.
    Zhu, X., Milanfar, P.: Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Trans. Image Process. 19(12), 3116–3132 (2010)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Université Paris Descartes, Sorbonne Paris Cité, MAP5, CNRS UMR 8145ParisFrance

Personalised recommendations