Journal of Mathematical Imaging and Vision

, Volume 52, Issue 2, pp 285–302 | Cite as

Tomographic Reconstruction of 3-D Irrotational Vector Fields via a Discretized Ray Transform

  • Chrysa D. Papadaniil
  • Leontios J. Hadjileontiadis


In this paper, 3-D vector field tomography (3D-VFT) is employed to reconstruct three-dimensional, irrotational fields in a bounded cubic domain. A sampling process along the scanning lines that further assigns the derived points to preordained finite reconstruction points accomplishes data redundancy, lacking when the problem is formed in the continuous domain, and results in the formulation of an over-determined system of linear equations. The only precondition to the system solution, that corresponds to a discretized inversion of the Ray transform, is the known location and values of a limited number of boundary points. The method is accompanied by a theoretical analysis on the regularization achieved and the errors introduced. The effectiveness and robustness of the method are demonstrated by means of simulations of electric fields, a series of perturbation tests, and a comparison with two alternative baseline methodologies.


3-D vector field tomography Ray transform Inverse problems Irrotational fields 



This work is inspired by and dedicated to the memory of the late Professor Maria Petrou. The authors would like to thank Dr. Vasiliki Kosmidou and Ms. Alexandra Koulouri for their valuable contribution to this work. The latter was carried out as part of the GSRT Research Excellent Grant ARISTEIA, within the 4th Strategic Objective of the operational program “Education and Lifelong Learning” entitled ‘Supporting the Human Capital in order to Promote Research and Innovation’, under Grant agreement 440, Project CBP: Cognitive Brain signal Processing lab, coordinated by the Information Technologies Institute—Centre for Research & Technology—Hellas.


  1. 1.
    Aben, H.K.: Kerr effect tomography for general axisymmetric field. Appl. Opt. 26(14), 2921–2924 (1987)CrossRefGoogle Scholar
  2. 2.
    Braun, H., Hauck, A.: Tomographic reconstruction of vector fields. IEEE Trans. Signal Process. 39(2), 464–471 (1991)CrossRefzbMATHGoogle Scholar
  3. 3.
    Defrise, M., Gullberg, G.T.: 3D reconstruction of tensors and vectors (2005)Google Scholar
  4. 4.
    Efremov, N., Poluektov, N., Kharchenko, V.: Tomography of ion and atom velocities in plasmas. J. Quant. Spectrosc. Radiative Transf. 53(6), 723–728 (1995)CrossRefGoogle Scholar
  5. 5.
    Friedman, A.: Partial Differential Equations. Courier Dover Publications, New York (2011)Google Scholar
  6. 6.
    Fulton, S.R., Ciesielski, P.E., Schubert, W.H.: Multigrid methods for elliptic problems: a review. Monthly Weather Rev. 114(5), 943–959 (1986)CrossRefGoogle Scholar
  7. 7.
    Giannakidis, A., Kotoulas, L., Petrou, M.: Improved 2-d vector field reconstruction using virtual sensors and the radon transform. In: Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008. EMBS 2008, pp. 2725–2728. IEEE (2008)Google Scholar
  8. 8.
    Giannakidis, A., Kotoulas, L., Petrou, M.: Virtual sensors for 2D vector field tomography. JOSA A 27(6), 1331–1341 (2010)CrossRefGoogle Scholar
  9. 9.
    Giannakidis, A., Petrou, M.: Sampling bounds for 2-D vector field tomography. J. Math. Imaging Vis. 37(2), 151–165 (2010)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Giannakidis, A., Petrou, M.: Improved 2D vector field estimation using probabilistic weights. JOSA A 28(8), 1620–1635 (2011)CrossRefGoogle Scholar
  11. 11.
    Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections. Springer, Berlin (2009)CrossRefGoogle Scholar
  12. 12.
    Hertz, H.M.: Kerr effect tomography for nonintrusive spatially resolved measurements of asymmetric electric field distributions. Appl. Opt. 25(6), 914–921 (1986)CrossRefGoogle Scholar
  13. 13.
    Jovanovic, I.: Inverse problems in acoustic tomography: theory and applications. Ph.D. Thesis, EPFL, Lausanne (2008)Google Scholar
  14. 14.
    Juhlin, P.: Principles of doppler tomography. Technical Report, Lund University (Sweden). Department of Mathematics (1992)Google Scholar
  15. 15.
    Juhlin, S.P.: Doppler tomography. In: Proceedings of the 15th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, 1993, pp. 212–213. IEEE (1993)Google Scholar
  16. 16.
    Kaczmarz, S.: Angenäherte auflösung von systemen linearer gleichungen. Bulletin International de lAcademie Polonaise des Sciences et des Lettres 35, 355–357 (1937)Google Scholar
  17. 17.
    Koulouri, A., Petrou, M.: Vector field tomography: reconstruction of an irrotational field in the discrete domain. In: Proceedings of the SPPR (2012)Google Scholar
  18. 18.
    Louis, A.K., Maass, P.: A mollifier method for linear operator equations of the first kind. Inverse Probl. 6(3), 427 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Norton, S.J.: Tomographic reconstruction of 2-D vector fields: application to flow imaging. Geophys. J. Int. 97(1), 161–168 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Norton, S.J.: Unique tomographic reconstruction of vector fields using boundary data. IEEE Trans. Image Process. 1(3), 406–412 (1992)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Norton, S.J., Linzer, M.: Correcting for ray refraction in velocity and attenuation tomography: a perturbation approach. Ultrason. Imaging 4(3), 201–233 (1982)CrossRefGoogle Scholar
  22. 22.
    Osman, N.F., Prince, J.L.: Reconstruction of vector fields in bounded domain vector tomography. In: Proceedings of the International Conference on Image Processing, 1997, vol. 1, pp. 476–479. IEEE (1997)Google Scholar
  23. 23.
    Papadaniil, C.D., Hadjileontiadis, L.J.: Towards an overall 3-D vector field reconstruction via discretization and a linear equations system. In: Proceedings of the IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE), 2013, pp. 1–4. IEEE (2013)Google Scholar
  24. 24.
    Petrou, M., Giannakidis, A.: Full tomographic reconstruction of 2D vector fields using discrete integral data. Comput. J. 54(9), 1491–1504 (2011)CrossRefGoogle Scholar
  25. 25.
    Prince, J.L.: Tomographic reconstruction of 3-D vector fields using inner product probes. IEEE Trans. Image Process. 3(2), 216–219 (1994)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Radon, J.: Über die bestimmungen von funktionen durch ihre integralwerte längs gewisser mannigfaltkeiten. Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math-Nat. 69(16), 262–277 (1917)Google Scholar
  27. 27.
    Rieder, A., Schuster, T.: The approximate inverse in action iii: 3D-doppler tomography. Numerische Mathematik 97(2), 353–378 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)CrossRefzbMATHGoogle Scholar
  29. 29.
    Schuster, T.: The 3D doppler transform: elementary properties and computation of reconstruction kernels. Inverse Probl. 16(3), 701 (2000)CrossRefzbMATHGoogle Scholar
  30. 30.
    Schuster, T.: An efficient mollifier method for three-dimensional vector tomography: convergence analysis and implementation. Inverse Probl. 17(4), 739 (2001)CrossRefzbMATHGoogle Scholar
  31. 31.
    Segre, S.: The measurement of poloidal magnetic field in a tokamak by the change of polarization of an electromagnetic wave. Plasma Phys. 20(4), 295 (1978)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Sparr, G., Strahlen, K., Lindstrom, K., Persson, H.: Doppler tomography for vector fields. Inverse Probl. 11(5), 1051 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Tao, Y.K., Davis, A.M., Izatt, J.A.: Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified hilbert transform. Opt. Express 16(16), 12350–12361 (2008)CrossRefGoogle Scholar
  34. 34.
    Valk, P.E.: Positron Emission Tomography: Basic Sciences. Springer, New York (2003)Google Scholar
  35. 35.
    Wernsdörfer, A.: Complete reconstruction of three-dimensional vector fields. In: Proceedings of the ECAPT’93 (Karlsruhe) (1993)Google Scholar
  36. 36.
    West, D.B., et al.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River (2001)Google Scholar
  37. 37.
    Yuhai, C., Youquan, J., Wei, S.: Utilizing phase retard integration method of flow birefringence to analyse the flow with symmetric plane. Acta Mechanica Sinica 6(4), 374–381 (1990)CrossRefGoogle Scholar
  38. 38.
    Zahn, M.: Transform relationship between kerr-effect optical phase shift and nonuniform electric field distributions. IEEE Trans. Dielectr. Electr. Insulation, 1(2), 235–246 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chrysa D. Papadaniil
    • 1
  • Leontios J. Hadjileontiadis
    • 1
  1. 1.Department of Electrical and Computer EngineeringAristotle University of ThessaloníkiThessaloníkiGreece

Personalised recommendations