Advertisement

Solving Uncalibrated Photometric Stereo Using Total Variation

  • Yvain Quéau
  • François Lauze
  • Jean-Denis Durou
Article

Abstract

Estimating the shape and appearance of an object, given one or several images, is still an open and challenging research problem called 3D-reconstruction. Among the different techniques available, photometric stereo (PS) produces highly accurate results when the lighting conditions have been identified. When these conditions are unknown, the problem becomes the so-called uncalibrated PS problem, which is ill-posed. In this paper, we will show how total variation can be used to reduce the ambiguities of uncalibrated PS, and we will study two methods for estimating the parameters of the generalized bas-relief ambiguity. These methods will be evaluated through the 3D-reconstruction of real-world objects.

Keywords

3D-reconstruction Photometric stereo  Total variation Generalized bas-relief ambiguity 

References

  1. 1.
    Abrams, A., Hawley, C., Pless, R.: Heliometric Stereo: Shape from Sun Position. In: Proceedings of the 12th European Conference on Computer Vision. Lecture Notes in Computer Science, vol. 7573, pp. 357–370 (2012)Google Scholar
  2. 2.
    Ackermann, J., Langguth, F., Fuhrmann, S., Goesele, M.: Photometric Stereo for Outdoor Webcams. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 262–269 (2012)Google Scholar
  3. 3.
    Alldrin, N.G., Mallick, S.P., Kriegman, D.J.: Resolving the Generalized Bas-relief Ambiguity by Entropy Minimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  4. 4.
    Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Alternating Proximal Algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE’s. J. Convex Anal. 15(3), 485–506 (2008)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations (2nd edn), Applied Mathematical Sciences, vol. 147. Springer (2006)Google Scholar
  6. 6.
    Barsky, S., Petrou, M.: The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1239–1252 (2003)CrossRefGoogle Scholar
  7. 7.
    Belhumeur, P.N., Kriegman, D.J., Yuille, A.L.: The bas-relief ambiguity. Int. J. Comput. Vision 35(1), 33–44 (1999)CrossRefGoogle Scholar
  8. 8.
    Bresson, X., Chan, T.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging 2(4), 455–484 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20(1), 89–97 (2004)MathSciNetGoogle Scholar
  10. 10.
    Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40(1), 120–145 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Chandraker, M.K., Kahl, F., Kriegman, D.J.: Reflections on the Generalized Bas-Relief Ambiguity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. I, pp. 788–795 (2005)Google Scholar
  13. 13.
    Chang, J.Y., Lee, K.M., Lee, S.U.: Multiview normal field integration using level set methods. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Workshop on Beyond Multiview Geometry: Robust Estimation and Organization of Shapes from Multiple Cues (2007)Google Scholar
  14. 14.
    Drbohlav, O., Chantler, M.: Can Two Specular Pixels Calibrate Photometric Stereo? In: Proceedings of the 10th IEEE International Conference on Computer Vision, vol. II, pp. 1850–1857 (2005)Google Scholar
  15. 15.
    Durou, J.D., Courteille, F.: Integration of a normal field without boundary condition. In: Proceedings of the First International Workshop on Photometric Analysis For Computer Vision (2007)Google Scholar
  16. 16.
    Durou, J.D., Falcone, M., Sagona, M.: Numerical methods for shape-from-shading: A new survey with benchmarks. Comput. Vis. Image Underst. 109(1), 22–43 (2008)CrossRefGoogle Scholar
  17. 17.
    Epstein, R., Yuille, A., Belhumeur, P.N.: Learning and Recognizing Objects Using Illumination Subspaces. In: Proceedings of the \(4^{\rm th}\) European Conference on Computer Vision, International Workshop on Object Representation for Computer Vision (1996)Google Scholar
  18. 18.
    Fan, J., Wolff, L.B.: Surface curvature and shape reconstruction from unknown multiple illumination and integrability. Comput. Vis. Image Underst. 65(2), 347–359 (1997)CrossRefGoogle Scholar
  19. 19.
    Favaro, P., Papadhimitri, T.: A Closed-Form Solution to Uncalibrated Photometric Stereo via Diffuse Maxima. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 821–828 (2012)Google Scholar
  20. 20.
    Frankot, R.T., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 439–451 (1988)CrossRefzbMATHGoogle Scholar
  21. 21.
    Galliani, S., Ju, Y.C., Breuß, M., Bruhn, A.: Generalised Perspective Shape from Shading in Spherical Coordinates. In: Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision, pp. 222–233 (2013)Google Scholar
  22. 22.
    Georghiades, A.S.: Incorporating the Torrance and Sparrow model of reflectance in uncalibrated photometric stereo. In: Proceedings of the 9th IEEE International Conference on Computer Vision, vol. II, pp. 816–823 (2003)Google Scholar
  23. 23.
    Georghiades, A.S., Kriegman, D.J., Belhumeur, P.N.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)CrossRefGoogle Scholar
  24. 24.
    Harker, M., O’Leary, P.: Least squares surface reconstruction from measured gradient fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  25. 25.
    Hayakawa, H.: Photometric stereo under a light-source with arbitrary motion. J. Opt. Soc. Am. Part A 11(11), 3079–3089 (1994)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Hernández, C., Vogiatzis, G., Brostow, G.J., Stenger, B., Cipolla, R.: Multiview photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 548–554 (2008)CrossRefGoogle Scholar
  27. 27.
    Hertzmann, A., Seitz, S.M.: Example-based photometric stereo: shape reconstruction with general, varying BRDFs. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1254–1264 (2005)CrossRefGoogle Scholar
  28. 28.
    Horn, B.K.P., Brooks, M.J.: The variational approach to shape from shading. Comput. Vis. Gr. Image Process. 33(2), 174–208 (1986) Google Scholar
  29. 29.
    Horn, B.K.P., Brooks, M.J.: Shape from Shading. MIT Press, Cambridge (1989)Google Scholar
  30. 30.
    Horovitz, I., Kiryati, N.: Depth from gradient fields and control points: Bias correction in photometric stereo. Image Vis. Comput. 22(9), 681–694 (2004)CrossRefGoogle Scholar
  31. 31.
    Koenderink, J.J., Van Doorn, A.J.: The generic bilinear calibration-estimation problem. Int. J. Comput. Vision 23(3), 217–234 (1997)CrossRefGoogle Scholar
  32. 32.
    Kozera, R.: Existence and uniqueness in photometric stereo. Appl. Math. Comput. 44(1), 1–103 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Lee, K., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)CrossRefGoogle Scholar
  34. 34.
    Mallick, S., Zickler, T., Kriegman, D., Belhumeur, P.: Beyond lambert: Reconstructing specular surfaces using color. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2005)Google Scholar
  35. 35.
    Mecca, R., Durou, J.D.: Unambiguous photometric stereo using two images. In: Proceedings of the 16th International Conference on Image Analysis and Processing, pp. 286–295 (2011)Google Scholar
  36. 36.
    Mecca, R., Rosman, G., Kimmel, R., Bruckstein, A.M.: Perspective Photometric Stereo with Shadows. In: Proceedings of the \(4^{\rm th}\) International Conference on Scale Space and Variational Methods in Computer Vision, pp. 258–269 (2013)Google Scholar
  37. 37.
    Oliensis, J.: Uniqueness in shape from shading. Int. J. Comput. Vision 6(2), 75–104 (1991)CrossRefGoogle Scholar
  38. 38.
    Onn, R., Bruckstein, A.M.: Integrability disambiguates surface recovery in two-image photometric stereo. Int. J. Comput. Vision 5(1), 105–113 (1990)CrossRefGoogle Scholar
  39. 39.
    Papadhimitri, T., Favaro, P.: A closed-form, consistent and robust solution to uncalibrated photometric stereo via local diffuse reflectance maxima. Int. J. Comput. Vision 107(2), 139–154 (2013)Google Scholar
  40. 40.
    Phong, B.T.: Illumination for computer generated pictures. Commun. ACM 18(6), 311–317 (1975)CrossRefGoogle Scholar
  41. 41.
    Quéau, Y., Lauze, F., Durou, J.D.: Solving the Uncalibrated Photometric Stereo Problem Using Total Variation. In: Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision, pp. 270–281 (2013)Google Scholar
  42. 42.
    Reddy, D., Agrawal, A., Chellappa, R.: Enforcing integrability by error correction using L1-minimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2009)Google Scholar
  43. 43.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)CrossRefzbMATHGoogle Scholar
  44. 44.
    Shi, B., Matsushita, Y., Wei, Y., Xu, C., Tan, P.: Self-calibrating Photometric Stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2010)Google Scholar
  45. 45.
    Simchony, T., Chellappa, R., Shao, M.: Direct analytical methods for solving Poisson equations in computer vision problems. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 435–446 (1990)CrossRefGoogle Scholar
  46. 46.
    Verbiest, F., Van Gool, L.: Photometric stereo with coherent outlier handling and confidence estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  47. 47.
    Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 139–144 (1980)CrossRefGoogle Scholar
  48. 48.
    Wu, L., Ganesh, A., Shi, B., Matsushita, Y., Wang, Y., Ma, Y.: Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery. In: Proceedings of the 10th Asian Conference on Computer Vision (2010)Google Scholar
  49. 49.
    Yuille, A.L., Snow, D.: Shape and Albedo from Multiple Images using Integrability. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 158–164 (1997)Google Scholar
  50. 50.
    Zhou, Z., Wu, Z., Tan, P.: Multi-view Photometric Stereo with Spatially Varying Isotropic Materials. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yvain Quéau
    • 1
  • François Lauze
    • 2
  • Jean-Denis Durou
    • 1
  1. 1.IRIT, UMR CNRS 5505ToulouseFrance
  2. 2.DIKUCopenhagenDenmark

Personalised recommendations