Journal of Mathematical Imaging and Vision

, Volume 50, Issue 3, pp 235–245 | Cite as

Error-Tolerant Color Rendering for Digital Cameras

  • Simone Bianco
  • Raimondo Schettini


In digital cameras a color processing pipeline is implemented to convert the RAW image acquired by the camera sensor into a faithful representation of the original scene. There are two main modules in this pipeline: the former is the illuminant estimation and correction module, the latter is the color matrix transformation. In this work we design extended color correction pipelines which exploit the crosstalks between their modules to lead to a higher color rendition accuracy. The effectiveness of the proposed pipelines is shown on a publicly available dataset of RAW images.


Image processing pipeline Illuminant estimation Color correction Color matrix transformation Digital camera 


  1. 1.
    Sharma, G.: Digital Color Imaging Handbook. CRC Press, Boca Raton (2002) CrossRefGoogle Scholar
  2. 2.
    Ramanath, R., Snyder, W.E., Yoo, Y., Drew, M.S.: Color image processing pipeline. IEEE Signal Process. Mag. 22(1), 34–43 (2005) CrossRefGoogle Scholar
  3. 3.
    Adams, J.E., Hamilton, J.F.: Digital Camera Image Processing Chain Design. Single-Sensor Imaging. CRC Press, Boca Raton (2009) Google Scholar
  4. 4.
    Hordley, S.D.: Scene illuminant estimation: past, present, and future. Color Res. Appl. 31(4), 303–314 (2006) CrossRefGoogle Scholar
  5. 5.
    Ebner, M.: Color Constancy. Wiley, London (2007) Google Scholar
  6. 6.
    Foster, D.H.: Color constancy. Vis. Res. 51, 674–700 (2011) CrossRefGoogle Scholar
  7. 7.
    Gijsenij, A., Gevers, T., van de Weijer, J.: Computational color constancy: survey and experiments. IEEE Trans. Image Process. 20(9), 2475–2489 (2011) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Finlayson, G.D., Drew, M.S.: Constrained least-squares regression in color spaces. J. Electron. Imaging 6, 484–493 (1997) CrossRefGoogle Scholar
  9. 9.
    Hubel, P.M., Holm, J., Finlayson, G.D., Drew, M.S.: Matrix calculations for digital photography. In: Proceedings of the IS&T/SID 5th Color Imaging Conference, pp. 105–111 (1997) Google Scholar
  10. 10.
    Bianco, S., Gasparini, F., Russo, A., Schettini, R.: A new method for RGB to XYZ transformation based on pattern search optimization. IEEE Trans. Consum. Electron. 53(3), 1020–1028 (2007) CrossRefGoogle Scholar
  11. 11.
    Burns, P.D., Berns, R.S.: Error propagation analysis in color measurement and imaging. Color Res. Appl. 22(4), 280–289 (1997) CrossRefGoogle Scholar
  12. 12.
    Bianco, S., Bruna, A., Naccari, F., Schettini, R.: Color space transformations for digital photography exploiting information about the illuminant estimation process. J. Opt. Soc. Am. A 29(3), 374–384 (2012) CrossRefGoogle Scholar
  13. 13.
    von Kries, J.: Chromatic Adaptation. Festschrift der Albrecht-Ludwig-Universität, Fribourg (1902). Translation: MacAdam, D.L.: Sources of color science. MIT Press, Cambridge (1970) Google Scholar
  14. 14.
    Finlayson, G.D., Hordley, S.D.: Color by correlation: a simple, unifying framework for color constancy. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1209–1221 (2001) CrossRefGoogle Scholar
  15. 15.
    Bianco, S., Gasparini, F., Schettini, R.: Consensus based framework for illuminant chromaticity estimation. J. Electron. Imaging 17(2), 023013 (2008) CrossRefGoogle Scholar
  16. 16.
    Finlayson, G.D.: Color constancy in diagonal chromaticity space. In: IEEE Proc. 5th International Conference on Computer Vision, pp. 218–223 (1995) CrossRefGoogle Scholar
  17. 17.
    Van De Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE Trans. Image Process. 16(9), 2207–2214 (2007) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Buchsbaum, G.: A spacial processor model for object color perception. J. Franklin Inst. 310, 1–26 (1980) CrossRefGoogle Scholar
  19. 19.
    Cardei, V., Funt, B., Barnard, K.: White point estimation for uncalibrated images. In: Proceedings of the IS&T/SID 7th Color Imaging Conference, pp. 97–100 (1999) Google Scholar
  20. 20.
    Finlayson, G., Trezzi, E.: Shades of gray and colour constancy. In: Proceedings IS&T/SID 12th Color Imaging Conference, pp. 37–41 (2004) Google Scholar
  21. 21.
    Bianco, S., Ciocca, G., Cusano, C., Schettini, R.: Improving color constancy using indoor-outdoor image classification. IEEE Trans. Image Process. 17(12), 2381–2392 (2008) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Bianco, S., Ciocca, G., Cusano, C., Schettini, R.: Automatic color constancy algorithm selection and combination. Pattern Recognit. 43, 695–705 (2010) CrossRefzbMATHGoogle Scholar
  23. 23.
    Gehler, P.V., Rother, C., Blake, A., Minka, T., Sharp, T.: Bayesian color constancy revisited. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008), pp. 1–8 (2008) Google Scholar
  24. 24.
    Pascale, D.: RGB coordinates of the Macbeth ColorChecker, pp. 1–16 (2006).
  25. 25.
    Hartigan, J.A., Wong, M.A.: Algorithm AS136: a k-means clustering algorithm. Appl. Stat. 28, 100–108 (1979) CrossRefzbMATHGoogle Scholar
  26. 26.
    Bianco, S., Schettini, R., Vanneschi, L.: Empirical modeling for colorimetric characterization of digital cameras. In: Proceedings of IEEE International Conference on Image Processing (ICIP’09), pp. 3469–3472 (2009) Google Scholar
  27. 27.
    Forsyth, D.A.: A novel algorithm for color constancy. Int. J. Comput. Vis. 5(1), 5–36 (1990) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Shi, L., Funt, B.V.: Re-processed Version of the Gehler Color Constancy Database of 568 Images. Available online Last access: 22 May, 2012
  29. 29.
    Finlayson, G.D., Mackiewicz, M., Hurlbert, A.: Root-polynomial colour correction. In: Proceedings of the IS&T/SID 19th Color and Imaging Conference, pp. 115–119 (2011) Google Scholar
  30. 30.
    Bianco, S., Gasparini, F., Schettini, R., Vanneschi, L.: Polynomial modeling and optimization for colorimetric characterization of scanners. J. Electron. Imaging 17(4), 043002 (2008) CrossRefGoogle Scholar
  31. 31.
    Bianco, S., Cusano, C.: Color target localization under varying illumination conditions. In: Computational Color Imaging Workshop 2011. LNCS, vol. 6626, pp. 245–255 (2011) Google Scholar
  32. 32.
    Kang, H.R.: Computational Color Technology, vol. PM159. SPIE Press, Bellingham (2006) CrossRefGoogle Scholar
  33. 33.
    Finlayson, G.D., Drew, M.S., Funt, B.V.: Color constancy: generalized diagonal transforms suffice. J. Opt. Soc. Am. A 11(11), 3011–3019 (1994) CrossRefGoogle Scholar
  34. 34.
    Bianco, S., Schettini, R.: Computational color constancy. In: 3rd European Workshop of Visual Information Processing (EUVIP), pp. 1–7 (2011) CrossRefGoogle Scholar
  35. 35.
    Fairchild, M.D.: Color Appearance Models. Addison-Wesley, Reading (1998) Google Scholar
  36. 36.
    Bianco, S., Schettini, R.: Two new von Kries based chromatic adaptation transforms found by numerical optimization. Color Res. Appl. 35(3), 184–192 (2010) CrossRefGoogle Scholar
  37. 37.
    Smoyer, E.P., Taplin, L.A., Berns, R.S.: Experimental evaluation of museum case study digital camera systems. In: Proceedings of the IS&T 2005 Archiving Conference, pp. 85–89 (2005) Google Scholar
  38. 38.
    Lewis, R.M., Torczon, V.: Pattern search algorithms for bound constrained minimization. SIAM J. Control Optim. 9, 1082–1099 (1999) MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Lewis, R.M., Torczon, V.: Pattern search methods for linearly constrained minimization. SIAM J. Control Optim. 10, 917–941 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Funt, B., Jiang, H.: Nondiagonal color correction. In: Proceedings of the 2003 International Conference on Image Processing (ICIP 2003), pp. 481–484 (2003) Google Scholar
  41. 41.
    Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–128 (1977) CrossRefGoogle Scholar
  42. 42.
    Ebner, M.: Color constancy based on local space average color. Mach. Vis. Appl. 20(5), 283–301 (2009) CrossRefGoogle Scholar
  43. 43.
    Bleier, M., Riess, C., Beigpour, S., Eibenberger, E., Angelopoulou, E., Troger, T., Kaup, A.: Color constancy and non-uniform illumination: can existing algorithms work? In: IEEE International Conference on Computer Vision Workshops, pp. 774–781 (2011) Google Scholar
  44. 44.
    Gijsenij, A., Lu, R., Gevers, T.: Color constancy for multiple light sources. IEEE Trans. Image Process. 21(2), 697–707 (2012) MathSciNetCrossRefGoogle Scholar
  45. 45.
    Bianco, S., Schettini, R.: Adaptive color constancy using faces. IEEE Trans. Pattern Anal. Mach. Intell. (2014). doi: 10.1109/TPAMI.2013.2297710 zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations