Advertisement

Journal of Mathematical Imaging and Vision

, Volume 49, Issue 3, pp 511–529 | Cite as

A Cortical-Inspired Geometry for Contour Perception and Motion Integration

  • Davide BarbieriEmail author
  • Giovanna Citti
  • Giacomo Cocci
  • Alessandro Sarti
Article

Abstract

In this paper we develop a geometrical model of functional architecture for the processing of spatio-temporal visual stimuli. The model arises from the properties of the receptive field linear dynamics of orientation and speed-selective cells in the visual cortex, that can be embedded in the definition of a geometry where the connectivity between points is driven by the contact structure of a 5D manifold. Then, we compute the stochastic kernels that are the approximations of two Fokker Planck operators associated to the geometry, and implement them as facilitation patterns within a neural population activity model, in order to reproduce some psychophysiological findings about the perception of contours in motion and trajectories of points found in the literature.

Keywords

Visual cortex Lie groups Contact geometry Galilean group Cognitive neuroscience Spatio-temporal models 

References

  1. 1.
    Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2(2), 284–299 (1985) CrossRefGoogle Scholar
  2. 2.
    Ahmed, B., Cordery, P.M., McLelland, D., Bair, W., Krug, K.: Long-range clustered connections within extrastriate visual area V5/MT of the rhesus macaque. Cereb. Cortex 22(1), 60–73 (2012) CrossRefGoogle Scholar
  3. 3.
    Ambrosio, L., Masnou, S.: A direct variational approach to a problem arising in image recostruction. Interfaces Free Bound. 5(1), 63–81 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Angelucci, A., Levitt, J.B., Walton, E.J.S., Hupe, J., Bullier, J., Lund, J.S.: Circuits for local and global signal integration in primary visual cortex. J. Neurosci. 22(19), 8633–8646 (2002) Google Scholar
  5. 5.
    August, J., Zucker, S.W.: The curve indicator random field: curve organization via edge correlation. In: Boyer, K., Sarkar, S. (eds.) Perceptual Organization for Artificial Vision Systems, pp. 265–288. Kluwer, Dordrecht (2000) CrossRefGoogle Scholar
  6. 6.
    August, J., Zucker, S.W.: Sketches with curvature: the curve indicator random field and Markov processes. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 387–400 (2003) CrossRefGoogle Scholar
  7. 7.
    Boscain, U., Duits, R., Rossi, F., Sachkov, Y.: Curve cuspless reconstruction via sub-Riemannian geometry (2012). arXiv:1203.3089
  8. 8.
    Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D.: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17(6), 2112–2127 (1997) Google Scholar
  9. 9.
    Chirikjian, G.S.: Stochastic Models, Information Theory, and Lie Groups vol. 2. Birkhäuser, Basel (2012) CrossRefzbMATHGoogle Scholar
  10. 10.
    Chisum, H.J., Mooser, F., Fitzpatrick, D.: Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. J. Neurosci. 23(7), 2947–2960 (2003) Google Scholar
  11. 11.
    Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24(3), 307–326 (2006) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Cocci, G., Barbieri, D., Sarti, A.: Spatio-temporal receptive fields of cells in V1 are optimally shaped for stimulus velocity estimation. J. Opt. Soc. Am. A 29(1), 130–138 (2012) CrossRefGoogle Scholar
  13. 13.
    Daugman, J.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 2(7), 1160–1169 (1985) CrossRefGoogle Scholar
  14. 14.
    DeAngelis, G.C., Ohzawa, I., Freeman, R.D.: Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. I. General characteristics and postnatal development. J. Neurophysiol. 69(4), 1091–1117 (1993) Google Scholar
  15. 15.
    Duits, R., Franken, E.M.: Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, part I: linear left-invariant diffusion equations on SE(2). Q. Appl. Math. 68, 255–292 (2010) zbMATHMathSciNetGoogle Scholar
  16. 16.
    Duits, R., Franken, E.M.: Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, part II: nonlinear left-invariant diffusion equations on invertible orientation scores. Q. Appl. Math. 68, 293–331 (2010) zbMATHMathSciNetGoogle Scholar
  17. 17.
    Duits, R., van Almsick, M.: The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2D Euclidean motion group. Q. Appl. Math. 66, 27–67 (2008) zbMATHGoogle Scholar
  18. 18.
    Duits, R., Führ, H., Janssen, B., Bruurmijn, M., Florack, L., Van Assen, H.: Evolution equations on Gabor transforms and their applications (2011). arXiv:1110.6087
  19. 19.
    Ermentrout, G.B., Cowan, J.D.: Large scale spatially organized activity in neural nets. SIAM J. Appl. Math. 38(1), 1–21 (1980) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Field, D.J., Hayes, A., Hess, R.F.: Contour integration by the human visual system: evidence for a local association field. Vis. Res. 33, 173–193 (1993) CrossRefGoogle Scholar
  21. 21.
    Folland, G.B.: Harmonic Analysis on Phase Space. Princeton University Press, Princeton (1989) Google Scholar
  22. 22.
    Geiges, H.: An Introduction to Contact Topology. Cambridge University Press, Cambridge (2008) CrossRefzbMATHGoogle Scholar
  23. 23.
    Geisler, W.S.: Motion streaks provide a spatial code for motion direction. Nature 400(6739), 65–69 (1999) CrossRefGoogle Scholar
  24. 24.
    Graham, N.V.: Beyond multiple pattern analyzers modeled as linear filters (as classical V1 simple cells): useful additions of the last 25 years. Vis. Res. 51, 1397–1430 (2011) CrossRefGoogle Scholar
  25. 25.
    Grzywacz, N.M., Watamaniuk, S.N.J., McKee, S.P.: Temporal coherence theory for the detection and measurement of visual motion. Vis. Res. 35(22), 3183–3203 (1995) CrossRefGoogle Scholar
  26. 26.
    Hladky, R.K., Pauls, S.D.: Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model. J. Math. Imaging Vis. 36, 1–27 (2010) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Hoffman, W.C.: The lie algebra of visual perception. J. Math. Psychol. 3, 65–98 (1966) CrossRefzbMATHGoogle Scholar
  28. 28.
    Hoffman, W.C.: The visual cortex is a contact bundle. Appl. Math. Comput. 32, 137–167 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119(1), 147–171 (1967) CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Hubel, D.H.: Eye, Brain and Vision. Scientific American Library, New York (1988) Google Scholar
  31. 31.
    Hubel, D.H., Wiesel, T.N.: Ferrier lecture: functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B, Biol. Sci. 198(1130), 1–59 (1977) CrossRefGoogle Scholar
  32. 32.
    Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58(6), 1233–1258 (1987) Google Scholar
  33. 33.
    Kisvarday, Z.F., Toth, E., Rausch, M., Eysel, U.T.: Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cereb. Cortex 7(7), 605–618 (1997) CrossRefGoogle Scholar
  34. 34.
    Koenderink, J.J., van Doorn, A.J.: Representation of local geometry in the visual system. Biol. Cybern. 55, 367–375 (1987) CrossRefzbMATHGoogle Scholar
  35. 35.
    Ledgeway, T., Hess, R.F., Geisler, W.S.: Grouping local orientation and direction signals to extract spatial contours: empirical tests of “association field” models of contour integration. Vis. Res. 45(19), 2511–2522 (2005) CrossRefGoogle Scholar
  36. 36.
    Lee, T.S., Nguyen, M.: Dynamics of subjective contour formation in the early visual cortex. Proc. Natl. Acad. Sci. USA 98(4), 1907–1911 (2001) CrossRefGoogle Scholar
  37. 37.
    Lorenceau, J., Alais, D.: Form constraints in motion binding. Nat. Neurosci. 4(7), 745–751 (2001) CrossRefGoogle Scholar
  38. 38.
    Malach, R., Schirman, T.D., Harel, M., Tootell, R.B., Malonek, D.: Organization of intrinsic connections in owl monkey area MT. Cereb. Cortex 7(4), 386–393 (1997) CrossRefGoogle Scholar
  39. 39.
    Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications. AMS, Providence (2002) zbMATHGoogle Scholar
  40. 40.
    Mumford, D.: Elastica and computer vision. In: Bajaj, C.L. (ed.) Algebraic Geometry and Its Applications, pp. 491–506. Springer, Berlin (1994) CrossRefGoogle Scholar
  41. 41.
    Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I: basic properties. Acta Math. 155, 103–147 (1985) CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Nitzberg, M., Mumford, D., Shiota, T.: Filtering, Segmentation and Depth. Lecture Notes in Computer Science, vol. 662. Springer, Berlin (1993) CrossRefzbMATHGoogle Scholar
  43. 43.
    Øksendal, B.: Stochastic Differential Equations: an Introduction with Applications. Springer, Berlin (2010) Google Scholar
  44. 44.
    Olson, I.R., Gatenby, J.C., Leung, H.C., Skudlarski, P., Gore, J.C.: Neuronal representation of occluded objects in the human brain. Neuropsychologia 42(1), 95–104 (2004) CrossRefGoogle Scholar
  45. 45.
    Pan, Y., Chen, M., Yin, J., An, X., Zhang, X., Lu, Y., Gong, H., Li, W., Wang, W.: Equivalent representation of real and illusory contours in macaque V4. J. Neurosci. 32(20), 6760–6770 (2012) CrossRefGoogle Scholar
  46. 46.
    Pauls, S.D., Hladky, R.K.: Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model. J. Math. Imaging Vis. 36(1), 563–594 (2010) MathSciNetGoogle Scholar
  47. 47.
    Petitot, J., Tondut, Y.: Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux. Math. Sci. Hum. 145, 5–101 (1999) MathSciNetGoogle Scholar
  48. 48.
    Petkov, N., Subramanian, E.: Motion detection, noise reduction, texture suppression and contour enhancement by spatiotemporal Gabor filters with surround inhibition. Biol. Cybern. 97(5–6), 423–439 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Rainville, S.J.M., Wilson, H.R.: Global shape coding for motion-defined radial-frequency contours. Vis. Res. 45(25–26), 3189–3201 (2005) CrossRefGoogle Scholar
  50. 50.
    Ringach, D.L.: Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J. Neurophysiol. 88(1), 455–463 (2002) Google Scholar
  51. 51.
    Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, Berlin (2004) CrossRefzbMATHGoogle Scholar
  52. 52.
    Roerig, B., Kao, J.P.: Organization of intracortical circuits in relation to direction preference maps in ferret visual cortex. J. Neurosci. 19(24) (1999) Google Scholar
  53. 53.
    Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent lie groups. Acta Math. 137, 247–320 (1977) CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Sabinin, L.V.: Smooth Quasigroups and Loops. Kluwer, Dordrecht (1999) CrossRefzbMATHGoogle Scholar
  55. 55.
    Sanguinetti, G., Citti, G., Sarti, A.: Image completion using a diffusion driven mean curvature flowin a sub-Riemannian space. In: VISAPP 2008, vol. 2, pp. 46–53 (2008) Google Scholar
  56. 56.
    Sanguinetti, G., Citti, G., Sarti, A.: A model of natural image edge co-occurrence in the rototranslation group. J. Vis. 10(14) (2010) Google Scholar
  57. 57.
    Scholl, B.J., Pylyshyn, Z.W.: Tracking multiple items through occlusion: clues to visual objecthood. Cogn. Psychol. 38(2), 259–290 (1999) CrossRefGoogle Scholar
  58. 58.
    Sorba, P.: The Galilei group and its connected subgroups. J. Math. Phys. 17(6), 941–953 (1976) CrossRefzbMATHMathSciNetGoogle Scholar
  59. 59.
    Verghese, P., McKee, S.P.: Predicting future motion. J. Vis. 2(5) (2002) Google Scholar
  60. 60.
    Verghese, P., Watamaniuk, S.N.J., McKee, S.P., Grzywacz, N.M.: Local motion detectors cannot account for the detectability of an extended trajectory in noise. Vis. Res. 39(1), 19–30 (1999) CrossRefGoogle Scholar
  61. 61.
    Verghese, P., McKee, S.P., Grzywacz, N.M.: Stimulus configuration determines the detectability of motion signals in noise. J. Opt. Soc. Am. A 17(9), 1525–1534 (2000) CrossRefGoogle Scholar
  62. 62.
    Watamaniuk, S.N.J.: The predictive power of trajectory motion. Vis. Res. 45(24), 2993–3003 (2005) CrossRefGoogle Scholar
  63. 63.
    Watamaniuk, S.N.J., MkKee, S.P.: Seeing motion behind occluders. Nature 377(6551), 729–730 (1995) CrossRefGoogle Scholar
  64. 64.
    Watamaniuk, S.N.J., McKee, S.P., Grzywacz, N.M.: Detecting a trajectory embedded in random-direction motion noise. Vis. Res. 35(1), 65–77 (1995) CrossRefGoogle Scholar
  65. 65.
    Weliky, M., Bosking, W.H., Fitzpatrck, D.: A systematic map of direction preference in primary visual cortex. Nature 379(6567), 725–728 (1996) CrossRefGoogle Scholar
  66. 66.
    Whitaker, D., Levi, D.M., Kennedy, G.J.: Integration across time determines path deviation discrimination for moving objects. PLoS ONE 3(4) (2008) Google Scholar
  67. 67.
    Williams, L.R., Jacobs, D.W.: Stochastic completion fields. In: ICCV Proceedings (1995) Google Scholar
  68. 68.
    Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972) CrossRefGoogle Scholar
  69. 69.
    Wu, W., Tiesinga, P.H., Tucker, T.R., Mitroff, S.R., Fitzpatrick, D.: Dynamics of population response to changes of motion direction in primary visual cortex. J. Neurosci. 31(36), 12767–12777 (2011) CrossRefGoogle Scholar
  70. 70.
    Zucker, S.W.: Differential geometry from the Frenet point of view: boundary detection, stereo, texture and color. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 357–373. Springer, New York (2006) CrossRefGoogle Scholar
  71. 71.
    Zweck, J.W., Williams, L.R.: Euclidean group invariant computation of stochastic completion fields using shiftable-twistable functions. J. Math. Imaging Vis. 21(2), 135–154 (2004) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Davide Barbieri
    • 1
    Email author
  • Giovanna Citti
    • 2
  • Giacomo Cocci
    • 3
  • Alessandro Sarti
    • 4
  1. 1.Institut des Systèmes ComplexesParisFrance
  2. 2.Department of MathematicsUniversity of BolognaBolognaItaly
  3. 3.DEI - Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”University of BolognaBolognaItaly
  4. 4.CAMS - Centre d’Analyse et de Mathématique SocialesEHESSParisFrance

Personalised recommendations