Advertisement

Journal of Mathematical Imaging and Vision

, Volume 50, Issue 1–2, pp 126–143 | Cite as

Tree-Oriented Analysis of Brain Artery Structure

  • Sean Skwerer
  • Elizabeth Bullitt
  • Stephan Huckemann
  • Ezra Miller
  • Ipek Oguz
  • Megan Owen
  • Vic Patrangenaru
  • Scott Provan
  • J. S. Marron
Article

Abstract

Statistical analysis of magnetic resonance angiography (MRA) brain artery trees is performed using two methods for mapping brain artery trees to points in phylogenetic treespace: cortical landmark correspondence and descendant correspondence. The differences in end-results based on these mappings are highlighted to emphasize the importance of correspondence in tree-oriented data analysis. Representation of brain artery systems as points in phylogenetic treespace, a mathematical space developed in (Billera et al. Adv. Appl. Math 27:733–767, 2001), facilitates this analysis. The phylogenetic treespace is a rich setting for tree-oriented data analysis. The Fréchet sample mean or an approximation is reported. Multidimensional scaling is used to explore structure in the data set based on pairwise distances between data points. This analysis of MRA data shows a statistically significant effect of age and sex on brain artery structure. Variation in the proximity of brain arteries to the cortical surface results in strong statistical difference between sexes and statistically significant age effect. That particular observation is possible with cortical correspondence but did not show up in the descendant correspondence.

Keywords

Tree Brain-anatomy Treespace Object-oriented data analysis Stratified space Statistics 

Notes

Acknowledgements

The MR brain images form healthy volunteers used in this paper were collected and made available by the CASILab at The University of North Carolina at Chapel Hill and were distributed by the MIDAS Data Server at Kitware, Inc.

References

  1. 1.
    Asfari, B., Tron, R., Vidal, R.: On the convergence of gradient descent for finding the Riemannian center of mass. SIAM J. Control Optim. Accepted (2013). http://www.cis.jhu.edu/~bijan/
  2. 2.
    Aydin, B., Pataki, G., Wang, H., Bullitt, E., Marron, J.: A principal component analysis for trees. Ann. Appl. Stat. 3, 1597–1615 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Aydin, B., Pataki, G., Wang, H., Ladha, A., Bullitt, E., Marron, J.: Visualizing the structure of large trees. Electron. J. Stat. 5, 405–420 (2009) CrossRefGoogle Scholar
  4. 4.
    Aylward, S., Bullit, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 21, 61–75 (2002) CrossRefGoogle Scholar
  5. 5.
    Barden, D., Le, H., Owen, M.: Central limit theorems for fréchet means in the space of phylogenetic trees. Electron. J. Probab. (2013) Google Scholar
  6. 6.
    Bac̆àk, M.: A novel algorithm for computing the Fréchet mean in Hadamard spaces (2012). arXiv:1210.2145v1
  7. 7.
    Bhattacharya, R., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample means on manifolds. Ann. Stat. (2003), 29 pp. Google Scholar
  8. 8.
    Billera, L., Holmes, S., Vogtmann, K.: Geometry of the space of phylogenetic trees. Adv. Appl. Math. 27, 733–767 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999) CrossRefzbMATHGoogle Scholar
  10. 10.
    Bullitt, E., Smith, J., Lin, W.: Designed database of MR brain images of healthy volunteers (2008) Google Scholar
  11. 11.
    Dryden, I., Mardia, K.: Statistical Shape Analysis. Wiley, New York (1998) zbMATHGoogle Scholar
  12. 12.
    Felsenstein, J.: Inferring Phylogenies. Sinauer Associates (2004) Google Scholar
  13. 13.
    Feragen, A., Lo, P., de Bruijne, M., Nielson, M., Lauze, F.: Towards a theory of statistical tree-shape analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20 (2012) Google Scholar
  14. 14.
    Fréchet, M.: Les élément aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincaré 10, 215–310 (1948) Google Scholar
  15. 15.
    Hillis, D., Heath, T., John, K.S.: Analysis and visualization of tree space. Syst. Biol. 54(3), 471–482 (2005) CrossRefGoogle Scholar
  16. 16.
    Hotz, T., Huckemann, S., Le, H., Marron, J.S., Mattingly, J.C., Miller, E., Nolen, J., Owen, M., Patrangenaru, V., Skwerer, S.: Sticky central limit theorems on open books. arXiv:1202.4267 (2012)
  17. 17.
    Lee, P., Chang, H., Lin, C., Chiang, A., Ching, Y.: Constructing neuronal structure from 3d confocal microscopic images. J. Med. Biol. Eng. 29, 1–6 (2009) Google Scholar
  18. 18.
    Miller, E., Owen, M., Provan, J.: Averaging metric phylogenetic trees (2012). arXiv:1211.7046
  19. 19.
    Nye, T.: Principal components analysis in the space of phylogenetic trees. Ann. Stat. 39, 2243–2794 (2011) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Oguz, I., Cates, J., Fletcher, T., Whitaker, R., Cool, D., Aylward, S., Styner, M.: Cortical correspondence using entropy-based particle systems and local features. In: Biomedical Imaging: From Nano to Macro, ISBI 2008, 5th IEEE International Symposium on, pp. 1637–1640. IEEE, New York (2008) Google Scholar
  21. 21.
    Owen, M., Provan, S.: A fast algorithm for computing geodesic distances in tree space. Comput. Biol. Bioinform. 8, 2–13 (2011) CrossRefGoogle Scholar
  22. 22.
    Shen, D., Shen, H., Bhamidi, S., Muñoz, Y.M., Kim, Y., Marron, J.: Functional data analysis of tree data objects. J. Comput. Graph. Stat., accepted (2014) Google Scholar
  23. 23.
    Sturm, K.: Probability measures on metric spaces of nonpositive curvature. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces. Contemp. Math., vol. 338, pp. 357–390 (2003). Lecture Notes from a quarter program on heat kernels, random walks, and analysis on manifolds and graphs CrossRefGoogle Scholar
  24. 24.
    Wang, J.: Geometric Structure of High-Dimensional Data and Dimensionality Reduction. Springer, Berlin (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sean Skwerer
    • 1
  • Elizabeth Bullitt
    • 2
  • Stephan Huckemann
    • 3
  • Ezra Miller
    • 4
  • Ipek Oguz
    • 5
  • Megan Owen
    • 6
  • Vic Patrangenaru
    • 7
  • Scott Provan
    • 1
  • J. S. Marron
    • 1
  1. 1.Department of Statistics and Operations ResearchUniversity of North CarolinaChapel HillUSA
  2. 2.Department of NeurosurgeryUniversity of North Carolina School of MedicineChapel HillUSA
  3. 3.Felix Bernstein Institute for Mathematical Statistics in the BiosciencesUniversity of GöttingenGöttingenGermany
  4. 4.Mathematics DepartmentDuke UniversityDurhamUSA
  5. 5.Department of Computer ScienceUniversity of North CarolinaChapel HillUSA
  6. 6.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada
  7. 7.Department of StatisticsFlorida State UniversityTallahasseeUSA

Personalised recommendations