Journal of Mathematical Imaging and Vision

, Volume 48, Issue 2, pp 266–278 | Cite as

An Evaluation of the Sparsity Degree for Sparse Recovery with Deterministic Measurement Matrices

  • Y. Berthoumieu
  • C. Dossal
  • N. Pustelnik
  • P. Ricoux
  • F. Turcu


The paper deals with the estimation of the maximal sparsity degree for which a given measurement matrix allows sparse reconstruction through 1-minimization. This problem is a key issue in different applications featuring particular types of measurement matrices, as for instance in the framework of tomography with low number of views. In this framework, while the exact bound is NP hard to compute, most classical criteria guarantee lower bounds that are numerically too pessimistic. In order to achieve an accurate estimation, we propose an efficient greedy algorithm that provides an upper bound for this maximal sparsity. Based on polytope theory, the algorithm consists in finding sparse vectors that cannot be recovered by 1-minimization. Moreover, in order to deal with noisy measurements, theoretical conditions leading to a more restrictive but reasonable bounds are investigated. Numerical results are presented for discrete versions of tomography measurement matrices, which are stacked Radon transforms corresponding to different tomograph views.


Compressed sensing Deterministic matrix Sparsity Greedy algorithm Sparcity degree 



The authors wish to thank the reviewers for their careful reading and relevants remarks that improve significatively the readability of this work.


  1. 1.
    Arias-Castro, E., Candès, E.J., Davenport, M.A.: On the fundamental limits of adaptive sensing. IEEE Trans. Inf. Theory 59(1), 472–481 (2013) CrossRefGoogle Scholar
  2. 2.
    Bach, F.R., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing penalties. Found. Trends Mach. Learn. 4(1), 1–106 (2012) CrossRefGoogle Scholar
  3. 3.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bourgain, J., Dilworth, S.J., Ford, K., Konyagin, S., Kutzarova, D.: Explicit constructions of RIP matrices and related problems. Duke Math. J. 159(1), 145–185 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Candès, E.J., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. (2013). doi: 10.1002/cpa.21455 Google Scholar
  7. 7.
    Candès, E.J., Romberg, J.: Practical signal recovery from random projections. In: Wavelet Applications in Signal and Image Processing XI. Proc. SPIE, vol. 5914 (2004) Google Scholar
  8. 8.
    Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006) CrossRefzbMATHGoogle Scholar
  9. 9.
    Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2010) Google Scholar
  10. 10.
    Cormack, A.M.: Sampling the Radon transform with beams of finite width. Phys. Med. Biol. 23(6), 1141–1148 (1978) CrossRefGoogle Scholar
  11. 11.
    Davenport, M., Duarte, M.F., Eldar, Y.C., Kutyniok, G.: Introduction to compressed sensing. In: Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2011) Google Scholar
  12. 12.
    DeVore, R.A.: Deterministic constructions of compressed sensing matrices. J. Complex. 23, 918–925 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Donoho, D.L.: Neighborly polytopes and sparse solutions of underdetermined linear equations. Tech. rep., Department of Statistics, Stanford University (2004) Google Scholar
  14. 14.
    Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Dossal, Ch., Peyré, G., Fadili, J.: A numerical exploration of compressed sampling recovery. Linear Algebra Appl. 432(7), 1663–1679 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Faridani, A.: Fan-bean tomography and sampling theory. Proc. Symp. Appl. Math. 63, 43–66 (2006) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Fuchs, J.: Recovery of exact sparse representations in the presence of bounded noise. IEEE Trans. Inf. Theory 51(10), 3601–3608 (2005) CrossRefGoogle Scholar
  18. 18.
    Fuchs, J.J.: On sparse representations in arbitrary redundant bases. IEEE Trans. Inf. Theory 50(6), 1341–1344 (2004) CrossRefGoogle Scholar
  19. 19.
    Grasmair, M., Haltmeier, M., Scherzer, O.: Necessary and sufficient conditions for linear convergence of 1-regularization. Commun. Pure Appl. Math. LXIV, 161–182 (2010) MathSciNetGoogle Scholar
  20. 20.
    Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inf. Theory 49(12), 3320–3325 (2003) CrossRefMathSciNetGoogle Scholar
  21. 21.
    Gribonval, R., Nielsen, M.: Highly sparse representations from dictionaries are unique and independent of the sparseness measure. Appl. Comp. Harm. Analysis 22(3), 335–355 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Juditsky, A., Nemirovski, A.: On verifiable sufficient conditions for sparse signal recovery via 1-minimisation. Math. Program., Ser. B 127, 57–88 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Krzakala, F., Mézard, M., Sausset, F., Sun, Y.F., Zdeborová, L.: Statistical physics-based reconstruction in compressed sensing. Phys. Rev. X. 2(021005), x+18 (2012) Google Scholar
  24. 24.
    Liang, D., Zhang, H.F., Ying, L.: Compressed-sensing photoacoustic imaging based on random optical illumination. Int. J. Funct. Inform. Pers. Med. 2(4), 394–406 (2009) Google Scholar
  25. 25.
    Lindgren, A.G., Rattey, P.A.: The inverse discrete Radon transform with applications to tomographic imaging using projection data. Adv. Electron. Electron Phys. 56, 359–410 (1981) CrossRefGoogle Scholar
  26. 26.
    Lu, Y., Zhang, X., Douraghy, A., Stout, D., Tian, J., Chan, T.F., Chatziioannou, A.F.: Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information. Opt. Express 17(10), 8062–8080 (2009) CrossRefGoogle Scholar
  27. 27.
    Pustelnik, N., Dossal, Ch., Turcu, F., Berthoumieu, Y., Ricoux, P.: A greedy algorithm to extract sparsity degree for 1/ 0-equivalence in a deterministic context. In: Proc. Eur. Sig. and Image Proc. Conference, Bucharest, Romania pp. 859–863 (2012) Google Scholar
  28. 28.
    Rattey, P.A., Lindgren, A.G.: Sampling the 2-d Radon transforms. IEEE Trans. Acoust. Speech Signal Process. 29, 994–1002 (1981) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Starck, J.-L., Donoho, D., Fadili, M.J., Rassat, A.: Sparsity and the Bayesian Perspective. Astron. Astroph. 552, A133 (2013) CrossRefGoogle Scholar
  30. 30.
    Tropp, J.A.: Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52, 1030–1051 (2006) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Y. Berthoumieu
    • 1
  • C. Dossal
    • 2
  • N. Pustelnik
    • 3
  • P. Ricoux
    • 4
  • F. Turcu
    • 1
  1. 1.Institut polytechnique de BordeauxUniversité de Bordeaux, IMS, UMR CNRS 5218Talence cedexFrance
  2. 2.Université de BordeauxIMB, UMR CNRS 5584Talence cedexFrance
  3. 3.Laboratoire de Physique de l’ENS LyonUMR CNRS 5672LyonFrance
  4. 4.TOTAL S.A/DG/Direction ScientifiqueParis la Defense CedexFrance

Personalised recommendations