Journal of Mathematical Imaging and Vision

, Volume 48, Issue 2, pp 308–338 | Cite as

A Combined First and Second Order Variational Approach for Image Reconstruction

Article

Abstract

In this paper we study a variational problem in the space of functions of bounded Hessian. Our model constitutes a straightforward higher-order extension of the well known ROF functional (total variation minimisation) to which we add a non-smooth second order regulariser. It combines convex functions of the total variation and the total variation of the first derivatives. In what follows, we prove existence and uniqueness of minimisers of the combined model and present the numerical solution of the corresponding discretised problem by employing the split Bregman method. The paper is furnished with applications of our model to image denoising, deblurring as well as image inpainting. The obtained numerical results are compared with results obtained from total generalised variation (TGV), infimal convolution and Euler’s elastica, three other state of the art higher-order models. The numerical discussion confirms that the proposed higher-order model competes with models of its kind in avoiding the creation of undesirable artifacts and blocky-like structures in the reconstructed images—a known disadvantage of the ROF model—while being simple and efficiently numerically solvable.

Keywords

Functions of bounded Hessian Split Bregman Denoising Deblurring Inpainting Staircasing 

Notes

Acknowledgements

The authors acknowledge the financial support provided by the Cambridge Centre for Analysis (CCA), the Royal Society International Exchanges Award IE110314 for the project “High-order Compressed Sensing for Medical Imaging”, the EPSRC/Isaac Newton Trust Small Grant “Non-smooth geometric reconstruction for high resolution MRI imaging of fluid transport in bed reactors” and the EPSRC first grant Nr. EP/J009539/1 “Sparse & Higher-order Image Restoration”. Further, this publication is based on work supported by Award No. KUK-I1-007-43, made by King Abdullah University of Science and Technology (KAUST). We thank Clarice Poon for providing us with the Euler’s elastica code. Finally, we would like to thank the referees for their very useful comments and suggestions that improved the presentation of the paper.

References

  1. 1.
    Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. In: Inverse Problems, pp. 1217–1229 (1994) Google Scholar
  2. 2.
    Alvarez, L., Mazorra, L.: Signal and image restoration using shock filters and anisotropic diffusion. SIAM J. Numer. Anal. 31(2), 590–605 (1994) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Amar, M., Cicco, V.: Relaxation of quasi-convex integrals of arbitrary order. Proc. R. Soc. Edinb., Sect. A, Math. 124(05), 927–946 (1994) CrossRefMATHGoogle Scholar
  4. 4.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000) MATHGoogle Scholar
  5. 5.
    Benning, M.: Singular Regularization of Inverse Problems (2011) MATHGoogle Scholar
  6. 6.
    Benning, M., Brune, C., Burger, M., Müller, J.: Higher-order TV methods—Enhancement via Bregman iteration. J. Sci. Comput. 54(2–3), 269–310 (2013) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Benning, M., Burger, M.: Error estimates for general fidelities. Electron. Trans. Numer. Anal. 38(44–68), 77 (2011) MathSciNetGoogle Scholar
  8. 8.
    Bergounioux, M., Piffet, L.: A second-order model for image denoising. Set-Valued Var. Anal. 18(3–4), 277–306 (2010) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bertozzi, A., Esedoglu, S., Gillette, A.: Analysis of a two-scale Cahn-Hilliard model for binary image inpainting. Multiscale Model. Simul. 6(3), 913–936 (2008) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bertozzi, A.L., Greer, J.B.: Low-curvature image simplifiers: global regularity of smooth solutions and Laplacian limiting schemes. Commun. Pure Appl. Math. 57(6), 764–790 (2004) CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011) CrossRefGoogle Scholar
  12. 12.
    Braides, A.: Γ-Convergence for Beginners. Oxford Lecture Series in Mathematics and Its Applications. (2002) CrossRefMATHGoogle Scholar
  13. 13.
    Bredies, K.: Recovering piecewise smooth multichannel images by minimization of convex functionals with total generalized variation penalty. Preprint (2012). http://math.uni-graz.at/mobis/publications/SFB-Report-2012-006.pdf
  14. 14.
    Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3, 1–42 (2009) MathSciNetGoogle Scholar
  15. 15.
    Bredies, K., Lorenz, D.: Mathematische Bildverarbeitung: Einführung in Grundlagen und moderne Theorie. Vieweg+Teubner, Wiesbaden (2011) CrossRefGoogle Scholar
  16. 16.
    Bredies, K., Valkonen, T.: Inverse problems with second-order total generalized variation constraints. In: Proceedings of SampTA 2011—9th International Conference on Sampling Theory and Applications, Singapore (2011) Google Scholar
  17. 17.
    Burger, M., He, L., Schönlieb, C.: Cahn-Hilliard inpainting and a generalization for gray value images. SIAM J. Imaging Sci. 2(4), 1129–1167 (2009) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Burger, M., Osher, S.: Convergence rates of convex variational regularization. Inverse Probl. 20, 1411 (2004) CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Burger, M., Resmerita, E., He, L.: Error estimation for Bregman iterations and inverse scale space methods in image restoration. Computing 81(2), 109–135 (2007) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Buttazzo, G., Freddi, L.: Functionals defined on measures and applications to non equi-uniformly elliptic problems. Ann. Mat. Pura Appl. 159(1), 133–149 (1991) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Cai, J., Chan, R., Shen, Z.: A framelet-based image inpainting algorithm. Appl. Comput. Harmon. Anal. 24(2), 131–149 (2008) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Chambolle, A., Lions, P.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011) CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Chan, T., Esedoglu, S.: Aspects of total variation regularized L 1 function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005) CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Chan, T., Kang, S., Shen, J.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63(2), 564–592 (2002) MATHMathSciNetGoogle Scholar
  26. 26.
    Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2001) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Chan, T.F., Esedoglu, S., Park, F.: Image decomposition combining staircase reduction and texture extraction. J. Vis. Commun. Image Represent. 18(6), 464–486 (2007) CrossRefGoogle Scholar
  28. 28.
    Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: ICIP (2)’94, pp. 168–172 (1994) Google Scholar
  29. 29.
    Combettes, P., Wajs, V., et al.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2006) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Dal Maso, G.: Introduction to Γ-Convergence. Birkhäuser, Basel (1993) CrossRefGoogle Scholar
  31. 31.
    Dal Maso, G., Fonseca, I., Leoni, G., Morini, M.: A higher order model for image restoration: the one dimensional case. SIAM J. Math. Anal. 40(6), 2351–2391 (2009) CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Demengel, F.: Fonctions à Hessien borné. Ann. Inst. Fourier 34, 155–190 (1985) CrossRefMathSciNetGoogle Scholar
  33. 33.
    Demengel, F., Temam, R.: Convex functions of a measure and applications. Indiana Univ. Math. J. 33, 673–709 (1984) CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Didas, S., Weickert, J., Burgeth, B.: Properties of higher order nonlinear diffusion filtering. J. Math. Imaging Vis. 35, 208–226 (2009) CrossRefMathSciNetGoogle Scholar
  35. 35.
    Dong, Y., Hintermüller, M., Knoll, F., Stollberger, R.: Total variation denoising with spatially dependent regularization. In: ISMRM 18th Annual Scientific Meeting and Exhibition Proceedings, p. 5088 (2010) Google Scholar
  36. 36.
    Duval, V., Aujol, J., Gousseau, Y.: The TVL1 model: a geometric point of view. Multiscale Model. Simul. 8(1), 154–189 (2009) CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Eckstein, J.: Splitting methods for monotone operators with applications to parallel optimisation. Ph.D. Thesis (1989) Google Scholar
  38. 38.
    Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics. SIAM, SIAM (1999) CrossRefMATHGoogle Scholar
  39. 39.
    Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal-dual algorithms for TV minimization. UCLA CAM report 09-67 (2009) Google Scholar
  40. 40.
    Evans, L.: Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics, vol. 19. AMS, Providence (2010) MATHGoogle Scholar
  41. 41.
    Feng, X., Prohl, A.: Analysis of total variation flow and its finite element approximations. Modél. Math. Anal. Numér. 37(3), 533 (2003) CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Frick, K., Marnitz, P., Munk, A.: Statistical multiresolution estimation in imaging: fundamental concepts and algorithmic framework. Electron. J. Stat. 6, 231–268 (2012) CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Frohn-Schauf, C., Henn, S., Witsch, K.: Nonlinear multigrid methods for total variation image denoising. Comput. Vis. Sci. 7(3), 199–206 (2004) MATHMathSciNetGoogle Scholar
  44. 44.
    Gabay, D.: Chapter IX applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Studies in Mathematics and Its Applications, vol. 15, pp. 299–331. Elsevier, Amsterdam (1983) CrossRefGoogle Scholar
  45. 45.
    Gilboa, G., Sochen, N., Zeevi, Y.: Image enhancement and denoising by complex diffusion processes. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1020–1036 (2004) CrossRefGoogle Scholar
  46. 46.
    Goldstein, T., Osher, S.: The split Bregman method for L1 regularized problems. SIAM J. Imaging Sci. 2, 323 (2009) CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Green, P.J.: Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imaging 9(1), 84–93 (1990) CrossRefGoogle Scholar
  48. 48.
    Hinterberger, W., Scherzer, O.: Variational methods on the space of functions of bounded Hessian for convexification and denoising. Computing 76, 109–133 (2006) CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Kanizsa, G.: La Grammaire du Voir. Diderot (1996) Google Scholar
  50. 50.
    Lai, R., Tai, X., Chan, T.: A ridge and corner preserving model for surface restoration. UCLA CAM report 11-55 (2011) Google Scholar
  51. 51.
    Lefkimmiatis, S., Bourquard, A., Unser, M.: Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans. Image Process. 21(3), 983–995 (2012) CrossRefMathSciNetGoogle Scholar
  52. 52.
    Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003) CrossRefGoogle Scholar
  53. 53.
    Lysaker, M., Tai, X.C.: Iterative image restoration combining total variation minimization and a second-order functional. Int. J. Comput. Vis. 66(1), 5–18 (2006) CrossRefGoogle Scholar
  54. 54.
    Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40(3), 965–994 (2003) CrossRefMathSciNetGoogle Scholar
  55. 55.
    Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1), 99–120 (2004) CrossRefMathSciNetGoogle Scholar
  56. 56.
    Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4, 460–489 (2005) CrossRefMATHMathSciNetGoogle Scholar
  57. 57.
    Papafitsoros, K., Sengul, B., Schönlieb, C.: Combined first and second order total variation inpainting using split Bregman (2013, to appear). http://www.maths.cam.ac.uk/postgrad/cca/files/ipol.pdf
  58. 58.
    Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational models with convex regularization. SIAM J. Imaging Sci. 3(4), 1122–1145 (2010) CrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    Pöschl, C.: Tikhonov regularization with general residual term. Ph.D. Thesis, Leopold-Franzens-Universität Innsbruck, Austria (2008) Google Scholar
  60. 60.
    Pöschl, C., Scherzer, O.: Characterization of minimisers of convex regularization functionals. Contemp. Math. 451, 219–248 (2008) CrossRefGoogle Scholar
  61. 61.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992) CrossRefMATHGoogle Scholar
  62. 62.
    Scherzer, O.: Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing 60(1), 1–27 (1998) CrossRefMATHMathSciNetGoogle Scholar
  63. 63.
    Schönlieb, C., Bertozzi, A., Burger, M., He, L.: Image inpainting using a fourth-order total variation flow. In: Proc. Int. Conf. SampTA09, Marseilles (2009) Google Scholar
  64. 64.
    Setzer, S.: Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage. In: Scale Space and Variational Methods in Computer Vision, vol. 5567, pp. 464–476 (2009) CrossRefGoogle Scholar
  65. 65.
    Setzer, S., Steidl, G.: Variational methods with higher order derivatives in image processing. In: Approximation XII, pp. 360–386 (2008) Google Scholar
  66. 66.
    Setzer, S., Steidl, G., Teuber, T.: Infimal convolution regularizations with discrete 1-type functionals. Commun. Math. Sci. 9, 797–872 (2011) CrossRefMATHMathSciNetGoogle Scholar
  67. 67.
    Tai, X., Hahn, J., Chung, G.: A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 4(1), 313–344 (2011) CrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    Tikhonov, A.: Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 5, 1035 (1963) MATHGoogle Scholar
  69. 69.
    Vassilevski, P., Wade, J.G.: A comparison of multilevel methods for total variation regularization. Electron. Trans. Numer. Anal. 6, 255–270 (1997) MATHMathSciNetGoogle Scholar
  70. 70.
    Vese, L.: A study in the BV space of a denoising-deblurring variational problem. Appl. Math. Optim. 44(2), 131–161 (2001) CrossRefMATHMathSciNetGoogle Scholar
  71. 71.
    Vogel, C.: A multigrid method for total variation-based image denoising. Prog. Syst. Control Theory 20, 323 (1995) Google Scholar
  72. 72.
    Wang, Y., Yin, W., Zhang, Y.: A fast algorithm for image deblurring with total variation regularization. CAAM technical report TR07-10, Rice University, Houston, Tex, USA (2007) Google Scholar
  73. 73.
    Wang, Z., Bovik, A.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009) CrossRefGoogle Scholar
  74. 74.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004) CrossRefGoogle Scholar
  75. 75.
    Whittaker, E.T.: On a new method of graduation. Proc. Edinb. Math. Soc. 41, 63–75 (1923) Google Scholar
  76. 76.
    Wu, C., Tai, X.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010) CrossRefMATHMathSciNetGoogle Scholar
  77. 77.
    Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for 1-minimisation with applications to compressed sensing. SIAM J. Imaging Sci. 1, 142–168 (2008) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Cambridge Centre for Analysis, Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK

Personalised recommendations