Advertisement

Journal of Mathematical Imaging and Vision

, Volume 48, Issue 2, pp 359–368 | Cite as

Differential-Based Geometry and Texture Editing with Brushes

  • Niklas Krauth
  • Matthias Nieser
  • Konrad Polthier
Article
  • 369 Downloads

Abstract

We present an interactive modeling framework for 3D shapes and for texture maps. The technique combines a differential-based deformation method with the idea of geometry brushes that allow to interactively apply modifications by painting on the geometry. Whereas most other deformation techniques demand the designer to define and move hard constrained regions on the surface, the proposed modeling process is similar to sculpting.

Geometry brushes allow the user to locally manipulate the metric, enlarge, shrink or rotate parts of the surface and to generate bumps. In a similar way it is possible to modify texture maps, or more generally, arbitrary tensor maps on surfaces. The local modifications of the surface are integrated to a globally consistent deformation and visualized in real-time.

While the geometry brushes are intended for local editing, the underlying technique can also be applied globally. We show how differentials may be modified for creating specific effects, like cartoonization of shapes or adjusting texture images.

Keywords

Geometry brush Deformation Interactive modeling Texture editing 

Supplementary material

(MP4 16.0 MB)

References

  1. 1.
    Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14, 213–230 (2008) CrossRefGoogle Scholar
  2. 2.
    Crane, K., Pinkall, U., Schröder, P.: Spin transformations of discrete surfaces. ACM Trans. Graph. 30(4), 104:1–104:10 (2011) CrossRefGoogle Scholar
  3. 3.
    Dierkes, U., Hildebrandt, S., Küster, A., Wohlrab, O.: Minimal Surfaces vol. 1. Springer, Berlin (1992) Google Scholar
  4. 4.
    Eigensatz, M., Pauly, M.: Positional, metric, and curvature control for constraint-based surface deformation. Comput. Graph. Forum 28(2), 551–558 (2009) CrossRefGoogle Scholar
  5. 5.
    Eigensatz, M., Sumner, R.W., Pauly, M.: Curvature-domain shape processing. Comput. Graph. Forum 27(2), 241–250 (2008) CrossRefGoogle Scholar
  6. 6.
    von Funck, W., Theisel, H., Seidel, H.P.: Vector field based shape deformations. ACM Trans. Graph. 25, 1118–1125 (2006) CrossRefGoogle Scholar
  7. 7.
    Gal, R., Sorkine, O., Cohen-Or, D.: Feature-aware texturing. In: Proceedings of Eurographics Symposium on Rendering, pp. 297–303 (2006) Google Scholar
  8. 8.
    Gal, R., Sorkine, O., Mitra, N., Cohen-Or, D.: iwires: An analyze-and-edit approach to shape manipulation. ACM Trans. Graphics (Proc. ACM SIGGRAPH) 28(3), 33:1–33:10 (2009) Google Scholar
  9. 9.
    Girault, V., Raviart, P.: Finite element methods for Navier-Stokes equations. Springer, Berlin (1986) CrossRefzbMATHGoogle Scholar
  10. 10.
    Hanrahan, P., Haeberli, P.: Direct wysiwyg painting and texturing on 3d shapes. SIGGRAPH Comput. Graph. 24(4), 215–223 (1990) CrossRefGoogle Scholar
  11. 11.
    Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.Y., Teng, S.H., Bao, H., Guo, B., Shum, H.Y.: Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 1126–1134 (2006) CrossRefGoogle Scholar
  12. 12.
    Igarashi, T., Cosgrove, D.: Adaptive unwrapping for interactive texture painting. In: Proceedings of the 2001 Symposium on Interactive 3D graphics, I3D ’01, pp. 209–216. ACM, New York (2001) CrossRefGoogle Scholar
  13. 13.
    Kraevoy, V., Sheffer, A., Gotsman, C.: Matchmaker: constructing constrained texture maps. ACM Trans. Graph. 22(3), 326–333 (2003) CrossRefGoogle Scholar
  14. 14.
    Lawrence, J., Funkhouser, T.: A painting interface for interactive surface deformations. Graph. Models 66, 418–438 (2004) CrossRefGoogle Scholar
  15. 15.
    Lévy, B.: Constrained texture mapping for polygonal meshes. In: Siggraph, pp. 417–424 (2001) Google Scholar
  16. 16.
    Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. 24(3), 479–487 (2005) CrossRefGoogle Scholar
  17. 17.
    Milliron, T., Jensen, R.J., Barzel, R., Finkelstein, A.: A framework for geometric warps and deformations. ACM Trans. Graph. 21, 20–51 (2002) CrossRefGoogle Scholar
  18. 18.
    Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Fibermesh: designing freeform surfaces with 3d curves. ACM Trans. Graph. 26(3) (2007) Google Scholar
  19. 19.
    Nealen, A., Sorkine, O., Alexa, M., Cohen-Or, D.: A sketch-based interface for detail-preserving mesh editing. ACM Trans. Graph. 24(3), 1142–1147 (2005) CrossRefGoogle Scholar
  20. 20.
    Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Plateau 2(1), 1–28 (1993) MathSciNetGoogle Scholar
  21. 21.
    Pixologic, Inc.: Zbrush. See http://www.pixologic.com/zbrush/
  22. 22.
    Polthier, K., Preuss, E.: Identifying vector field singularities using a discrete Hodge decomposition. In: Visualization and Mathematics, vol. III, pp. 113–134. Springer, Berlin (2003) Google Scholar
  23. 23.
    Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. ACM Trans. Graph. 25 (2006) Google Scholar
  24. 24.
    Seo, H., Cordier, F.: Constrained texture mapping using image warping. Comput. Graph. Forum 29(1), 160–174 (2010) CrossRefGoogle Scholar
  25. 25.
    Sorkine, O., Botsch, M.: Tutorial: Interactive shape modeling and deformation. In: Eurographics (2009) Google Scholar
  26. 26.
    Takayama, K., Schmidt, R., Singh, K., Igarashi, T., Boubekeur, T., Sorkine, O.G.: Interactive mesh geometry cloning. Comput. Graph. Forum 30(2), 613–622 (2011) CrossRefGoogle Scholar
  27. 27.
    Toledo, S., Taucs: A library of sparse linear solvers, Version 2.2 (2003). See http://www.tau.ac.il/~stoledo/taucs/
  28. 28.
    Wardetzky, M.: Discrete differential operators on polyhedral surfaces—convergence and approximation. Ph.D. thesis, Freie Universität, Berlin (2006) Google Scholar
  29. 29.
    Xu, W., Zhou, K.: Gradient domain mesh deformation—a survey. J. Comput. Sci. Technol. 24(1), 6–18 (2009) CrossRefGoogle Scholar
  30. 30.
    Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with Poisson-based gradient field manipulation. ACM Trans. Graph. 23(3), 644–651 (2004) CrossRefGoogle Scholar
  31. 31.
    Zhou, Q., Weinkauf, T., Sorkine, O.: Feature-based mesh editing. In: Proc. Eurographics, Short Papers (2011) Google Scholar
  32. 32.
    Zimmermann, J., Nealen, A., Alexa, M.: Silsketch: automated sketch-based editing of surface meshes. In: Proceedings of the 4th Eurographics Workshop on Sketch-Based Interfaces and Modeling, SBIM ’07, pp. 23–30. ACM, New York (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Niklas Krauth
    • 1
  • Matthias Nieser
    • 1
  • Konrad Polthier
    • 1
  1. 1.Freie Universität BerlinBerlinGermany

Personalised recommendations