Advertisement

Journal of Mathematical Imaging and Vision

, Volume 47, Issue 1–2, pp 93–107 | Cite as

Estimating Photometric Properties from Image Collections

  • Mauricio Diaz
  • Peter Sturm
Article

Abstract

We address the problem of jointly estimating the scene illumination, the radiometric camera calibration and the reflectance properties of an object using a set of images from a community photo collection. The highly ill-posed nature of this problem is circumvented by using appropriate representations of illumination, an empirical model for the nonlinear function that relates image irradiance with intensity values and additional assumptions on the surface reflectance properties. Using a 3D model recovered from an unstructured set of images, we estimate the coefficients that represent the illumination for each image using a frequency framework. For each image, we also compute the corresponding camera response function. Additionally, we calculate a simple model for the reflectance properties of the 3D model. A robust non-linear optimization is proposed exploiting the high sparsity present in the problem.

Keywords

Photometry Photo collections Illumination Radiometric calibration 

References

  1. 1.
    Asada, N., Amano, A., Baba, M.: Photometric calibration of zoom lens systems. In: Proceedings of the 13th International Conference on Pattern Recognition, vol. 1, pp. 186–190 (1996) CrossRefGoogle Scholar
  2. 2.
    Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 5(10), 218–233 (2003) CrossRefGoogle Scholar
  3. 3.
    Chakrabarti, A., Scharstein, D., Zickler, T.: An empirical camera model for internet color vision. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 51.1–51.11 (2009) Google Scholar
  4. 4.
    Chang, Y.C., Reid, J.: Rgb calibration for color image analysis in machine vision. IEEE Trans. Image Process. 5(10), 1414–1422 (1996) CrossRefGoogle Scholar
  5. 5.
    Debevec, P., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: SIGGRAPH: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (1997) Google Scholar
  6. 6.
    Diaz, M., Sturm, P.: Exploiting image collections for recovering photometric properties. In: International Conference in Computer Analysis of Images and Patterns (CAIP), vol. 2, pp. 253–261 (2011) CrossRefGoogle Scholar
  7. 7.
    Diaz, M., Sturm, P.: Radiometric calibration using photo collections. In: IEEE International Conference on Computational Photography (ICCP), pp. 1–8 (2011) CrossRefGoogle Scholar
  8. 8.
    Finlayson, G., Hordley, S., Lu, C., Drew, M.: On the removal of shadows from images. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 59–68 (2006) CrossRefGoogle Scholar
  9. 9.
    Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Towards internet-scale multi-view stereo. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 1434–1441 (2010) Google Scholar
  10. 10.
    Furukawa, Y., Ponce, J.: Patch-based multi-view stereo software. See http://grail.cs.washington.edu/software/pmvs. Consulted on 01/2011
  11. 11.
    Grossberg, M.D., Nayar, S.K.: What is the space of camera response functions? In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, p. 602 (2003) Google Scholar
  12. 12.
    Grossberg, M.D., Nayar, S.K.: Modeling the space of camera response functions. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1272–1282 (2004) CrossRefGoogle Scholar
  13. 13.
    Haber, T., Fuchs, C., Bekaer, P., Seidel, H.P., Goesele, M., Lensch, H.: Relighting objects from image collections. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 627–634 (2009) Google Scholar
  14. 14.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003) Google Scholar
  15. 15.
    Ilie, A., Welch, G.: Ensuring color consistency across multiple cameras. In: IEEE International Conference on Computer Vision (ICCV), pp. 1269–1275 (2005) Google Scholar
  16. 16.
    Lin, S., Gu, J., Yamazaki, S., Shum, H.Y.: Radiometric calibration from a single image. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 938–945 (2004) Google Scholar
  17. 17.
    Lin, S., Zhang, L.: Determining the radiometric response function from a single grayscale image. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 66–73 (2005) Google Scholar
  18. 18.
    Lourakis, M., Argyros, A.: Sba: A software package for generic sparse bundle adjustment. ACM Trans. Math. Softw. 36(1), 1–30 (2009) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Luong, Q., Fua, P., Leclerc, Y.: The radiometry of multiple images. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 19–33 (2002) CrossRefGoogle Scholar
  20. 20.
    Mitsunaga, T., Nayar, S.K.: Radiometric self calibration. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 55–62 (1999) Google Scholar
  21. 21.
    Ng, T.T., Chang, S.F., Tsui, M.P.: Using geometry invariants for camera response function estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 1–8 (2007) Google Scholar
  22. 22.
    Ramamoorthi, R.: Modeling Illumination Variation with Spherical Harmonics. Face Processing: Advanced Modeling and Methods. Academis Press, San Diego (2005) Google Scholar
  23. 23.
    Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In: SIGGRAPH: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 117–128 (2001) CrossRefGoogle Scholar
  24. 24.
    Romeiro, F., Zickler, T.: Blind reflectometry. In: European Conference on Computer Vision (ECCV) (2010) Google Scholar
  25. 25.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. In: (ACM) Transactions on Graphics, pp. 835–846 (2006) Google Scholar
  26. 26.
    Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. Int. J. Comput. Vis. 80(2), 189–210 (2008) CrossRefGoogle Scholar
  27. 27.
    Takamatsu, J., Matsushita, Y., Ikeuchi, K.: Estimating camera response functions using probabilistic intensity similarity. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 33–41 (2008) Google Scholar
  28. 28.
    Yu, Y., Debevec, P., Malik, J., Hawkins, T.: Inverse global illumination: recovering reflectance models of real scenes from photographs. In: SIGGRAPH: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (1999) Google Scholar
  29. 29.
    Zhang, Z.: Parameter estimation techniques: a tutorial with application to conic fitting. Image Vis. Comput. 15, 59–76 (1997) CrossRefGoogle Scholar
  30. 30.
    Zickler, T.: Principles of appearance acquisition and representation. In: Foundations and Trends in Computer Graphics and Vision, pp. 1–119 (2009) Google Scholar
  31. 31.
    Seitz, S.M., Curless, B., Diebel, J., Scharstein, D.: A comparison and evaluation of multi–view stereo reconstruction algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 154–162 (2006) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.INRIA Grenoble Rhône-Alpes—Lab. LJKMontbonnot St. MartinFrance

Personalised recommendations