Advertisement

Journal of Mathematical Imaging and Vision

, Volume 48, Issue 3, pp 544–565 | Cite as

Conditional Toggle Mappings: Principles and Applications

  • Santiago Velasco-Forero
  • Jesús Angulo
  • Pierre Soille
Article

Abstract

We study a class of mathematical morphology filters to operate conditionally according to a set of pixels marked by a binary mask. The main contribution of this paper is to provide a general framework for several applications including edge enhancement and image denoising, when it is affected by salt-and-pepper noise. We achieve this goal by revisiting shock filters based on erosions and dilations and extending their definition to take into account the prior definition of a mask of pixels that should not be altered. New definitions for conditional erosions and dilations leading to the concept of conditional toggle mapping. We also investigate algebraic properties as well as the convergence of the associate shock filter. Experiments show how the selection of appropriate methods to generate the masks lead to either edge enhancement or salt-and-pepper denoising. A quantitative evaluation of the results demonstrates the effectiveness of the proposed methods. Additionally, we analyse the application of conditional toggle mapping in remote sensing as pre-filtering for hierarchical segmentation.

Keywords

Mathematical morphology Shock filters Salt-and-pepper noise Remote sensing 

References

  1. 1.
    Alvarez, L., Mazorra, L.: Signal and image restoration using shock filters and anisotropic diffusion. SIAM J. Numer. Anal. 31, 590–605 (1994) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Baudes, A., Coll, B., Morel, J.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Boncelet, C.: Image noise models. In: Bovik, A.C. (ed.) Handbook of Image and Video Processing, pp. 325–335. Academic Press, New York (2000) Google Scholar
  4. 4.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4, 490–530 (2005) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Chan, R., Chung-Wa, H., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 14(10), 1479–1485 (2005) CrossRefGoogle Scholar
  6. 6.
    Chatterjee, P., Milanfar, P.: Is denoising dead? IEEE Trans. Image Process. 19(4), 895–911 (2010) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Diop, E., Angulo, J.: Spatially adaptive PDEs for robust image sharpening. In: Proc. Int. Conf. Image Processing (ICIP), pp. 949–952 (2012) Google Scholar
  8. 8.
    Elder, J., Zucker, S.: Local scale control for edge detection and blur estimation. IEEE Trans. Pattern Anal. Mach. Intell. 20(7), 699–716 (1998) CrossRefGoogle Scholar
  9. 9.
    Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: A Compendium of Continuous Lattices. Springer, Berlin (1980) CrossRefMATHGoogle Scholar
  10. 10.
    Gilboa, G., Sochen, N., Zeevi, Y.: Image enhancement and denoising by complex diffusion processes. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1020–1034 (2004) CrossRefGoogle Scholar
  11. 11.
    Gilboa, G., Sochen, N.A., Zeevi, Y.Y.: Regularized shock filters and complex diffusion. In: Proceeding of the 7th European Conference on Computer Vision. Part I, ECCV’02, pp. 399–413. Springer, Berlin (2002) Google Scholar
  12. 12.
    Gonzalez, R., Woods, R.: Digital Image Processing. Prentice Hall, New York (2008) Google Scholar
  13. 13.
    Gower, J., Ross, G.: Minimum spanning trees and single linkage cluster analysis. Appl. Stat. 18(1), 54–64 (1969) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Grazzini, J., Soille, P.: Edge-preserving smoothing using a similarity measure in adaptive geodesic neighborhoods. Pattern Recognit. 42, 2306–2316 (2009) CrossRefMATHGoogle Scholar
  15. 15.
    Heijmans, H.J.A.M.: Morphological Image Operators vol. 10. Academic Press, New York (1994) MATHGoogle Scholar
  16. 16.
    Heijmans, H.J.A.M.: Composing morphological filters. IEEE Trans. Image Process. 6(5), 713–724 (1997). doi: 10.1109/83.568928 CrossRefGoogle Scholar
  17. 17.
    Heijmans, H.J.A.M., Nacken, P., Toet, A., Vincent, L.: Graph morphology. J. Vis. Commun. Image Represent. 3, 24–38 (1992) CrossRefGoogle Scholar
  18. 18.
    Heijmans, H.J.A.M., Ronse, C.: The algebraic basis of mathematical morphology. I. Dilations and erosions. Comput. Vis. Graph. Image Process. 50, 245–295 (1990) CrossRefMATHGoogle Scholar
  19. 19.
    Hwang, H., Haddad, R.A.: Adaptive median filters: new algorithms and results. IEEE Trans. Image Process. 4, 499–502 (1995) CrossRefGoogle Scholar
  20. 20.
    Jochems, T.: Morphologie mathématique appliquée au contrôle industriel de pièces coulées. Ph.D. thesis, Ecole National Supérieure des Mines de Paris (1997) Google Scholar
  21. 21.
    Keshet, R., Heijmans, H.J.A.M.: Adjunctions in pyramids, curve evolution and scale-spaces. Int. J. Comput. Vis. 52, 139–151 (2003) CrossRefGoogle Scholar
  22. 22.
    Kramer, H.P., Bruckner, J.B.: Iterations of a non-linear transformation for enhancement of digital images. Pattern Recognit. 7(1–2), 53–58 (1975) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Lukac, R., Smolka, B., Martin, K., Plataniotis, K., Venetsanopoulos, A.: Vector filtering for color imaging. IEEE Signal Process. Mag. 22(1), 74–86 (2005) CrossRefGoogle Scholar
  24. 24.
    Mallat, S.: A Wavelet Tour of Signal Processing. The Sparse Way, 3rd edn. Academic Press, New York (2008) Google Scholar
  25. 25.
    Maragos, P.: Lattice image processing: a unification of morphological and fuzzy algebraic systems. J. Math. Imaging Vis. 22, 333–353 (2005) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Meyer, F.: The levelings. In: Proc. of the ISMM’98, pp. 199–206. Kluwer Academic, Norwell (1998) Google Scholar
  27. 27.
    Meyer, F., Serra, J.: Contrasts and activity lattice. Signal Process. 16(4), 303–317 (1989). doi: 10.1016/0165-1684(89)90028-5 CrossRefMathSciNetGoogle Scholar
  28. 28.
    Motta, G., Ordentlich, E., Ramírez, I., Seroussi, G., Weinberger, M.J.: The iDUDE framework for grayscale image denoising. IEEE Trans. Image Process. 20(1), 1–21 (2011) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Osher, S., Rudin, L.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27, 919–940 (1990) CrossRefMATHGoogle Scholar
  30. 30.
    Osher, S., Rudin, L.: Shocks and other nonlinear filtering applied to image processing. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 1567, pp. 414–431 (1991) Google Scholar
  31. 31.
    Rivest, J.F., Soille, P., Beucher, S.: Morphological gradients. J. Electron. Imaging 2(4), 326–336 (1993). doi: 10.1117/12.159642 CrossRefGoogle Scholar
  32. 32.
    Roerdink, J.B.T.M.: Adaptivity and group invariance in mathematical morphology. In: International Conference of Image Processing, pp. 2253–2256. IEEE Press, New York (2009). doi: 10.1109/ICIP.2009.5413983 Google Scholar
  33. 33.
    Roerdink, J.B.T.M.: Personal communication (2012) Google Scholar
  34. 34.
    Schavemaker, J., Reinders, M.J.T., Gerbrands, J.J., Backer, E.: Image sharpening by morphological filtering. Pattern Recognit. 33(6), 997–1012 (2000) CrossRefGoogle Scholar
  35. 35.
    Serra, J.: Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances. Academic Press, New York (1988) Google Scholar
  36. 36.
    Serra, J.: Toggle mappings. In: Simon, J.C. (ed.) From Pixels to Features, pp. 61–72. North Holland, Amsterdam (1989) Google Scholar
  37. 37.
    Serra, J., Vincent, L.: An overview of morphological filtering. Circuits Syst. Signal Process. 11(1), 47–108 (1992) CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Soille, P.: Beyond self-duality in morphological image analysis. Image Vis. Comput. 23(2), 249–257 (2005) CrossRefGoogle Scholar
  39. 39.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008) CrossRefGoogle Scholar
  40. 40.
    Soille, P.: Constrained connectivity for the processing of very-high-resolution satellite images. Int. J. Remote Sens. 31(22), 5879–5893 (2010) CrossRefGoogle Scholar
  41. 41.
    Soille, P.: Preventing chaining through transitions while favouring it within homogeneous regions. In: Mathematical Morphology and Its Applications to Image and Signal Processing. Lecture Notes in Computer Science, vol. 6671, pp. 96–107. Springer, Berlin (2011) CrossRefGoogle Scholar
  42. 42.
    Soille, P., Grazzini, J.: Constrained Connectivity and Transition Regions. In: Proc. of the ISMM’09, pp. 59–69. Springer, Berlin (2009) Google Scholar
  43. 43.
    Srinivasan, K., Ebenezer, D.: A new fast and efficient decision-based algorithm for removal of high density impulse noises. IEEE Signal Process. Lett. 14(3), 189–192 (2007) CrossRefGoogle Scholar
  44. 44.
    Taguchi, A., Matsumoto, T.: Removal of impulse noise from highly corrupted images by using noise position information and directional information of image. In: Proc. SPIE, Nonlinear Image Processing and Pattern Analysis XII, vol. 4304, pp. 188–196 (2001) CrossRefGoogle Scholar
  45. 45.
    Takeda, H., Farsiu, S., Milanfar, P.: Robust kernel regression for restoration and reconstruction of images from sparse, noisy data. In: Proc. Int. Conf. Image Processing (ICIP), pp. 1257–1260 (2006) Google Scholar
  46. 46.
    Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 16(2), 349–366 (2007) CrossRefMathSciNetGoogle Scholar
  47. 47.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846 (1998) Google Scholar
  48. 48.
    Velasco-Forero, S., Angulo, J.: Supervised ordering in ℝp: application to morphological processing of hyperspectral images. IEEE Trans. Image Process. 20(11), 3301–3308 (2011) CrossRefMathSciNetGoogle Scholar
  49. 49.
    Velasco-Forero, S., Angulo, J.: Random projection depth for multivariate mathematical morphology. IEEE J. Sel. Top. Signal Process. 6(7), 753–763 (2012) CrossRefGoogle Scholar
  50. 50.
    van Vliet, L., Young, I., Beckers, G.: A nonlinear Laplace operator as edge detector in noisy images. Comput. Vis. Graph. Image Process. 45(2), 167–195 (1989). doi: 10.1016/0734-189X(89)90131-X CrossRefGoogle Scholar
  51. 51.
    Wang, Z., Zhang, D.: Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 46(1), 78–80 (1999) CrossRefGoogle Scholar
  52. 52.
    Weickert, J.: Coherence-enhancing shock filters. In: Lecture Notes in Computer Science, pp. 1–8. Springer, Berlin (2003) Google Scholar
  53. 53.
    Welk, M., Weickert, J., Galć, I.: Theoretical foundations for spatially discrete 1-d shock filtering. Image Vis. Comput. 25, 455–463 (2007) CrossRefGoogle Scholar
  54. 54.
    Xu, H., Zhu, G., Peng, H., Wang, D.: Adaptive fuzzy switching filter for images corrupted by impulse noise. Pattern Recognit. Lett. 25(15), 1657–1663 (2004) CrossRefGoogle Scholar
  55. 55.
    Zhang, S., Karim, M.: A new impulse detector for switching median filters. IEEE Signal Process. Lett. 9(11), 360–363 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Santiago Velasco-Forero
    • 1
  • Jesús Angulo
    • 2
  • Pierre Soille
    • 3
  1. 1.ITWMFraunhofer InstituteKaiserslauternGermany
  2. 2.CMM-Centre de Morphologie Mathematique, Mathématiques et SystèmesMINES ParisTechFontainebleau cedexFrance
  3. 3.Joint Research CenterEuropean CommissionIspraItaly

Personalised recommendations