Journal of Mathematical Imaging and Vision

, Volume 48, Issue 2, pp 369–382 | Cite as

Feature-Preserving Surface Reconstruction and Simplification from Defect-Laden Point Sets

  • Julie Digne
  • David Cohen-Steiner
  • Pierre Alliez
  • Fernando de Goes
  • Mathieu Desbrun
Article

Abstract

We introduce a robust and feature-capturing surface reconstruction and simplification method that turns an input point set into a low triangle-count simplicial complex. Our approach starts with a (possibly non-manifold) simplicial complex filtered from a 3D Delaunay triangulation of the input points. This initial approximation is iteratively simplified based on an error metric that measures, through optimal transport, the distance between the input points and the current simplicial complex—both seen as mass distributions. Our approach is shown to exhibit both robustness to noise and outliers, as well as preservation of sharp features and boundaries. Our new feature-sensitive metric between point sets and triangle meshes can also be used as a post-processing tool that, from the smooth output of a reconstruction method, recovers sharp features and boundaries present in the initial point set.

Keywords

Optimal transportation Wasserstein distance Linear programming Surface reconstruction Shape simplification Feature recovery 

References

  1. 1.
    Adamson, A., Alexa, M.: Anisotropic point set surfaces. In: Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, p. 13 (2006) Google Scholar
  2. 2.
    Allègre, R., Chaine, R., Akkouche, S.: Convection-driven dynamic surface reconstruction. In: Shape Modeling International, Cambridge, MA, USA, pp. 33–42 (2005) Google Scholar
  3. 3.
    Allègre, R., Chaine, R., Akkouche, S.: A dynamic surface reconstruction framework for large unstructured point sets. In: IEEE/Eurographics Symposium on Point-Based Graphics 2006, pp. 17–26 (2006) Google Scholar
  4. 4.
    Alliez, P., Cohen-Steiner, D., Tong, Y., Desbrun, M.: Voronoi-based variational reconstruction of unoriented point sets. In: Eurographics Symposium on Geometry Processing, pp. 39–48 (2007) Google Scholar
  5. 5.
    Amenta, N.: The Crust algorithm for 3d surface reconstruction. In: Symposium on Computational Geometry, pp. 423–424 (1999) Google Scholar
  6. 6.
    Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-squares clustering. Algorithmica 20, 61–76 (1998). doi:10.1007/PL00009187 CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Avron, H., Sharf, A., Greif, C., Cohen-Or, D.: 1-sparse reconstruction of sharp point set surfaces. ACM Trans. Graph. 29(5), 1–12 (2010) CrossRefGoogle Scholar
  8. 8.
    Boissonnat, J.D., Cazals, F.: Coarse-to-fine surface simplification with geometric guarantees. Comput. Graph. Forum 20(3), 490–499 (2001) CrossRefGoogle Scholar
  9. 9.
    Bonneel, N., van de Panne, M., Paris, S., Heidrich, W.: Displacement interpolation using Lagrangian mass transport. ACM Trans. Graph. (2011). doi:10.1145/2070781.2024192
  10. 10.
    CGAL: Computational Geometry Algorithms Library. http://www.cgal.org
  11. 11.
    CLP: coin-or linear program solver. http://www.coin-or.org/Clp/
  12. 12.
    Daniels, J.I., Ha, L.K., Ochotta, T., Silva, C.T.: Robust smooth feature extraction from point clouds. In: IEEE International Conference on Shape Modeling and Applications, pp. 123–136 (2007) Google Scholar
  13. 13.
    de Goes, F., Cohen-Steiner, D., Alliez, P., Desbrun, M.: An optimal transport approach to robust reconstruction and simplification of 2d shapes. Comput. Graph. Forum 30(5), 1593–1602 (2011) CrossRefGoogle Scholar
  14. 14.
    Digne, J., Morel, J.M., Souzani, C.M., Lartigue, C.: Scale space meshing of raw data point sets. Comput. Graph. Forum 30(6), 1630–1642 (2011) CrossRefGoogle Scholar
  15. 15.
    Dinh, H.Q., Turk, G., Slabaugh, G.: Reconstructing surfaces using anisotropic basis functions. In: International Conference on Computer Vision, pp. 606–613 (2001) Google Scholar
  16. 16.
    Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi Tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999) CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Fleishman, S., Cohen-Or, D., Silva, C.: Robust moving least-squares fitting with sharp features. In: ACM SIGGRAPH 2005 Papers, p. 552 (2005) Google Scholar
  18. 18.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: ACM SIGGRAPH, pp. 209–216 (1997) CrossRefGoogle Scholar
  19. 19.
    Gumhold, S., Wang, X., MacLeod, R.: Feature extraction from point clouds. In: International Meshing Roundtable, pp. 293–305 (2001) Google Scholar
  20. 20.
    Hornung, A., Kobbelt, L.: Robust reconstruction of watertight 3D models from non-uniformly sampled point clouds without normal information. In: Eurographics Symposium on Geometry Processing, pp. 41–50 (2006) Google Scholar
  21. 21.
    Huang, H., Li, D., Zhang, H., Ascher, U., Cohen-Or, D.: Consolidation of unorganized point clouds for surface reconstruction. ACM Trans. Graph. 28(5) (2009) Google Scholar
  22. 22.
    Huesmann, M.: Optimal transport between random measures. ArXiv e-prints (2012) Google Scholar
  23. 23.
    Jenke, P., Wand, M., Straßer, W.: Patch-graph reconstruction for piecewise smooth surfaces. In: Vision, Modeling, and Visualization 2008: Proceedings, p. 3 (2008) Google Scholar
  24. 24.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Eurographics Symposium on Geometry Processing, SGP’06, pp. 61–70 (2006) Google Scholar
  25. 25.
    Kolluri, R., Shewchuk, J.R., O’Brien, J.F.: Spectral surface reconstruction from noisy point clouds. In: Eurographics Symposium on Geometry Processing, pp. 11–21 (2004) Google Scholar
  26. 26.
    Labatut, P., Pons, J.P., Keriven, R.: Robust and efficient surface reconstruction from range data. Comput. Graph. Forum 28(8), 2275–2290 (2009) CrossRefGoogle Scholar
  27. 27.
    Lindstrom, P., Turk, G.: Evaluation of memoryless simplification. IEEE Trans. Vis. Comput. Graph. 5(2), 98–115 (1999) CrossRefGoogle Scholar
  28. 28.
    Lipman, Y., Daubechies, I.: Surface comparison with mass transportation (2010). ArXiv:0912.3488
  29. 29.
    Lipman, Y., Cohen-Or, D., Levin, D.: Data-dependent MLS for faithful surface approximation. In: Eurographics Symposium on Geometry Processing, p. 67 (2007) Google Scholar
  30. 30.
    Lipman, Y., Cohen-Or, D., Levin, D., Tal-Ezer, H.: Parameterization free projection for geometry reconstruction. ACM Trans. Graph. 26(3), 22 (2007) CrossRefGoogle Scholar
  31. 31.
    McAsey, M., Mou, L.: Optimal Locations and the Mass Transport Problem, pp. 131–148. American Mathematical Society, Providence (1999) Google Scholar
  32. 32.
    Mérigot, Q.: A multiscale approach to optimal transport. Comput. Graph. Forum 30(5), 1583–1592 (2011) CrossRefGoogle Scholar
  33. 33.
    Mérigot, Q., Ovsjanikov, M., Guibas, L.: Robust Voronoi-based curvature and feature estimation. In: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, pp. 1–12 (2009) CrossRefGoogle Scholar
  34. 34.
    Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of unity implicits. Comput. Graph. 22(3), 463–470 (2003) Google Scholar
  35. 35.
    Oztireli, C., Guennebaud, G., Gross, M.: Feature preserving point set surfaces based on non-linear kernel regression. Comput. Graph. Forum 28(2), 493–501 (2009) CrossRefGoogle Scholar
  36. 36.
    Pang, X.F., Pang, M.Y.: An algorithm for extracting geometric features from point cloud. In: International Conference on Information Management, Innovation Management and Industrial Engineering, vol. 4, pp. 78–83 (2009) Google Scholar
  37. 37.
    Pauly, M., Keiser, R., Gross, M.: Multi-scale feature extraction on point-sampled surfaces. Comput. Graph. Forum 22(3), 281–289 (2003) CrossRefGoogle Scholar
  38. 38.
    Peyré, G., Fadili, J., Rabin, J.: Wasserstein active contours. Tech. rep., Preprint Hal-00593424 (2011). http://hal.archives-ouvertes.fr/hal-00593424/
  39. 39.
    Rabin, J., Delon, J., Gousseau, Y.: Regularization of transportation maps for color and contrast transfer. In: IEEE International Conference on Image Processing, pp. 1933–1936 (2010) Google Scholar
  40. 40.
    Rabin, J., Peyré, G., Cohen, L.D.: Geodesic shape retrieval via optimal mass transport. In: European Conference on Computer Vision: Part V, vol. ECCV’10, pp. 771–784. Springer, Berlin, Heidelberg (2010) Google Scholar
  41. 41.
    Rabin, J., Delon, J., Gousseau, Y.: Transportation distances on the circle. J. Math. Imaging Vis. 41(1–2), 147–167 (2011) CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein barycenter and its application to texture mixing. In: Bruckstein, A., ter Haar Romeny, B., Bronstein, A., Bronstein, M. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 6667, pp. 435–446. Springer, Berlin, Heidelberg (2012) CrossRefGoogle Scholar
  43. 43.
    Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001) CrossRefGoogle Scholar
  44. 44.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000) CrossRefMATHGoogle Scholar
  45. 45.
    Salman, N., Yvinec, M., Mérigot, Q.: Feature Preserving Mesh Generation from 3D Point Clouds. In: Computer Graphics Forum, vol. 29, pp. 1623–1632 (2010) Google Scholar
  46. 46.
    Villani, C.: Topics in Optimal Transportation. American Mathematical Society, Providence (2010) Google Scholar
  47. 47.
    Walder, C., Chapelle, O., Schölkopf, B.: Implicit surface modelling as an eigenvalue problem. In: Machine Learning ICML, pp. 936–939 (2005) Google Scholar
  48. 48.
    Wu, J., Kobbelt, L.: Fast mesh decimation by multiple-choice techniques. In: Vision, Modeling, and Visualization, pp. 241–248 (2002) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Julie Digne
    • 1
  • David Cohen-Steiner
    • 1
  • Pierre Alliez
    • 1
  • Fernando de Goes
    • 2
  • Mathieu Desbrun
    • 2
  1. 1.Inria Sophia Antipolis—MéditerranéeLe Chesnay CedexFrance
  2. 2.California Institute of TechnologyPasadenaUSA

Personalised recommendations